13th INTERNATIONAL CONFERENCE on RENEWABLE ENERGY RESEARCH and APPLICATIONS (ICRERA 2024), Nagasaki, Japan November 9 - November 13, 2024

ORGANIZERS

CO-ORGANIZER

TECHNICAL CO-SPONSORS

SUPPORTERS

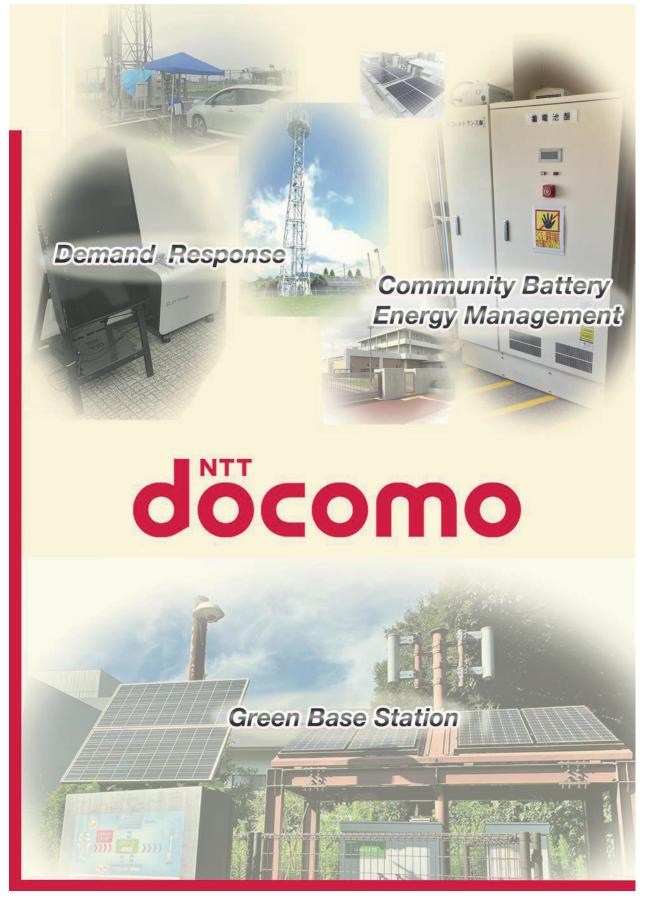
https://www.icrera.org

CATALOG NUMBERS			
Media Type	Part Number	ISBN	ONLINE ISSN
IEEE XPLORE	CFP2435T-ART	979-8-3503-7558-9	2572-6013
USB	CFP2435T-USB	979-8-3503-7557-2	-

太陽光角電と、水楽製造を ティーマイクの技層で、 その先へ。

太陽光から水素を生み出し、 カーボンニュートラルを変現する 未来を描いていきます。

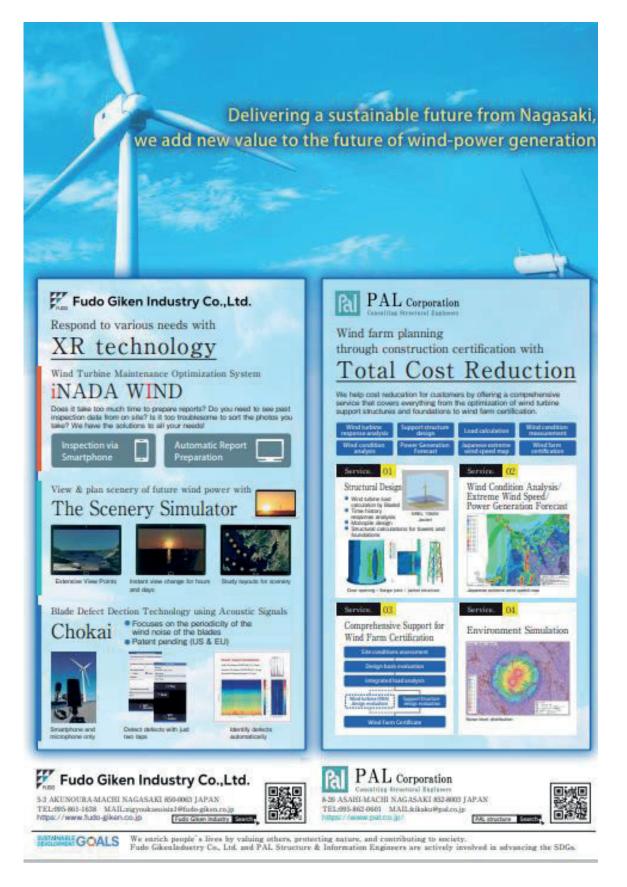
世界を、次へ。



PAYCLE INC. UPCX-Platforms PTE. LTD. Japan Society of Next Generation Sensor Technology (JASST)


The Future of IoT Pioneered by the Fusion of Sensor and Blockchain Technologies

Kyowakiden Industry Co.,Ltd.



DENSOTEN



株式会社 デンソーテン 回知回 本社/兵庫県神戸市兵庫区御所通1-2-28 www.denso-ten.com/jp/

DENSO TEN

COMMITTEES / BOARDS

Henevery Chaire			
Honorary Chairs			
Yoshinobu Higashi, Former Japan Ambassador to Romania, Japan	Hidehiko Kikuchi, Power Systems Corporation, Chief Executive Officer, Japan		
General Chair			
Fujio Kurokawa, Nagasaki Institute of Applied Science, Japan			
General Co-Chairs			
Ilhami Colak, İstinye University, Turkiye	Takashi Abe, Nagasaki University, Japan		
Vice General Chairs			
Hiroo Sekiya, Chiba University, Japan	Nobukazu Hoshi, Tokyo University of Science, Japan		
Masayoshi Yamamoto, Nagoya University, Japan	Nobumasa Matsui, Nagasaki Institute of Applied Science, Japan		
Steering Committee			
Ilhami Colak, Istinye University, Turkiye	Fujio Kurokawa, Nagasaki Inst. of Applied Science, Japan		
Miguel A. Sanz-Bobi, Universidad Pontificia Comillas, Spain	Adel Nasiri, University of Wisconsin in Milwaukee, USA		
Rosario Miceli, Palermo University, Italy	Nagi Fahmi, Aston University, UK		
Yusuf Ozturk, San Diego State University, USA	Brayima Dakyo, University du Havre, France		
Carmen Gergian, Transilvania University, Romania	Mihai Cernat, Transilvania University, Romania		
Khaled Ahmed, Stracthclyde University, UK	Sheldon Williamson, Ontario Tech University, Oshawa, Canada		

Program Chairs		
Ramazan Bayindir, Gazi University, Turkiye	Sertac Bayhan, Qatar Environment and Energy Research Institute, Qatar	
Carlo Cecati, University of L Aquila, L Aquila, Italy	Luis Gomes, Universidade Nova de Lisbon, Portugal	
Yousef Ibrahim, Federation University, Australia	Adel Nasiri, University of Milwaukee, USA	
Tamas Ruzsanyi, Ganz-Skoda Electric Ltd., Budapest	Emil Levi, Liverpool John Moores University, United Kingdom	
Antonio Luque Estepa, Universidad de Sevilla, Spain	Nur Sarma, Durham University, UK	
Nobumasa Matsui, Nagasaki Institute of Applied Science, Japan	Dan Ionel, University of Kentucky, Colleague of Engineering, USA	
Pekik Argo Dahono, Institut Teknologi Bandung, Endonezya	Wenlong Ming, Cardiff University, UK	
Erdal Bekiroglu, Gazi University, Turkiye	Masaharu Tanaka, Nagasaki Institute of Applied Science, Japan	

Secretariat		
Halil Ibrahim Bulbul, Gazi University, Turkiye	Yuichiro Shibata, Nagasaki University, Japan	
Kazuhiro Kajiwara, Nagasaki Institute of Applied	Yudai Furukawa, Nagasaki Institute of Applied	
Science, Japan	Science, Japan	

Publicity & Public Relations Chairs		
Yogesh Patel, Rockwell Automation, USA	Dong Wook Yoo, Korea	

In Sung Jung, Korea	Mehmet Yesilbudak, Nevsehir University, Turkiye
Erdal Irmak, Gazi University, Turkiye	Keiichi Hirose, NTT Facilities, Japan
Hideitsu Hino, Waseda University, Japan	H. Nurgul Durmus Senyapar, Gazi University, Turkiye

Registration Chairs		
Shuji Tanabe, Nagasaki University, Japan	Rae Young Kim, Korea	
Hidenori Maruta, Nagasaki University, Japan	Ersan Kabalci, Nevsehir University, Turkiye	
Han Ju Cha, Korea	Ayse Colak, Cardiff University, UK	
Kimihiro Nishijima, Sojo University, Japan	Gokhan Keven, Nevsehir University, Turkiye	
Jizhe Wang, Fukuoka University, Japan		

Finance	Chairs
Halil Ibrahim Bulbul, Gazi University, Turkiye	Mehmet Demirtas, Gazi University, Turkiye
Tadashi Suetsugu, Fukuoka University, Japan	

Gazi University, Turkiye
Korea
Gazi University, Turkiye

Exhibits and Industry Session Chairs		
Fujio Kurokawa, Nagasaki University, Japan	Nagi Fahmi, Aston University, UK	
Miguel Angel Sanz-Bobi, Comillas Pontificial Univ., Spain	Rosario Miceli, Palermo University, Italy	
Adel Nasiri, Milwaukee University, USA		

Tutorial and	Special	Session	Chairs
---------------------	---------	---------	--------

Sevki Demirbas, Gazi University, Turkiye Sertac Bayhan, Texas A&M University, Qatar

Local Organizing Committee

Nobumasa Matsui, Nagasaki Institute of Applied	Takashi Ishibashi, Bridge of Communications,	
Science, Japan	Japan	
Tadashi Suetsugu, Fukuoka University, Japan	Yuichiro Shibata, Nagasaki University, Japan	
Yoshito Tanaka, Nagasaki Institute of Applied	Junko Sunaga, Qualcomm Japan, Japan	
Science, Japan		
Hiroshi Sugimoto, Nagasaki Institute of Applied	Kimihiro Nishijima, Sojo University, Japan	
Science, Japan		
Macanari Kimura, Nagagaki University, Japan	Kiyoshi Ohishi, Nagaoka University of Technology,	
Masanari Kimura, Nagasaki University, Japan	Japan	
Takahiko Yamashita, The Open University of Japan,	Hideki Omori, Nagasaki Institute of Applied	
Japan	Science, Japan	
Haruhi Eto, Nagasaki Institute of Applied Science,	Yasuyuki Nishida, Headspring Inc., Japan	
Japan		
Kazuhiro Ohyama, Fukuoka Institute of Technology,	Shuji Tanabe, Nagasaki University, Japan	
Japan		
Chinishi Hamasaki Nagasaki University Janan	Masahito Shoyama, Nagasaki Institute of Applied	
Shinichi Hamasaki, Nagasaki University, Japan	Science, Japan	
Masanori Sato, Nagasaki Institute of Applied Science,	Yuichi Yokoi, Nagasaki University, Japan	
Japan		
Tetsuji Daido, Nagasaki University, Japan	Hidenori Maruta, Nagasaki University, Japan	
Tomohiro Furusato, Nagasaki University, Japan	Yuji Ohta, Isahaya Electronics Corp., Japan	

Masaharu Tanaka, Nagasaki Institute of Applied Science, Japan	Seiya Abe, Kyushu Institute of Technology, Japan
Takuya Kobayashi, TMEIC Corp., Japan	Keisuke Yokoo, Nagasaki Industrial Promotion Foundation, Japan
Kazuhiro Kajiwara, Nagasaki Institute of Applied	Yudai Furukawa, Nagasaki Institute of Applied
Science, Japan	Science, Japan
Jizhe Wang, Fukuoka University, Japan	

Audit Chair		
Seref Sagiroglu, Gazi University, Turkiye	Orhan Kaplan, Gazi University, Turkiye	

International Advisory Board	
Seref Sagiroglu, Gazi University, Turkiye	H. Bulent Ertan, Middle East Technical University, Turkiye
Athanasios N. Safacas, University of Patras, Greece	Mamadou Lamine Doumbia, Univ. of Quebec, Canada
G.D. Andreescu, Politehnica Univ.,Timisoara, Romania	Kodjo Agbossou, University of Quebec, Canada
A.O. Di Tommaso, Palermo University, Italy	Cengiz Taplamacioglu, University of Turkish Aeronautical Association, Turkiye
Sertac Bayhan, Qatar Environment and Energy Research Institute, Qatar	Jian-Xin Shen, Zhejiang University, China
Bakhyt Matkarimov, Kazakh-British Tec. Univ, Kazakhstan	Danielle Strickland, Aston University, UK
S. Mircevski, Cyril and Methodius Univ, Macedonia Zdenek Cerovsky, Czech Tech. Univ, Czech Republic	Marija Mirosevic, University of Dubrovnik, Croatia Robert M Cuzner, University of Wisconsin- Milwaukoo USA
Rosario Miceli, University of Palermo, Italy	Milwaukee, USA Hee-Jun Kim, Korea
Wang Shanming, China	Soo-Hyun Baek, Korea
Young-Seok Kim, Korea	Johann Walter Kolar, Switzerland
Chung-Yun Won, Korea	F. Dong Tan, USA
Dragan Maksimovic, USA	Tamas Ruzsanyi, Ganz-Skoda Electric Ltd.,
	Budapest, Hungary
Kan Akatsu, Shibaura Institute Of Technology, Japan	Masayoshi Yamamoto, Nagoya University, Japan
Seiya Abe, Kyushu Institute of Technology, Japan	Akio Tsuneda, Kumamoto University, Japan
Keiichiro Kondo, Waseda University, Japan	Toshimitsu Morizane, Osaka Institute Of Technology, Japan
Toshihiko Tanaka, Yamaguchi University, Japan	Katsumi Nishida, Ube National College of Technology, Japan
Wenchang Yeh, Shimane University, Japan	A.O. Di Tommaso, Palermo University, Italy
Samir Moulahoum, University of Medea, Algeria	Abdel Ghani Aissaoui, University of Bechar, Algeria Leopoldo Garcia Franquelo, Universidad de Sevilla,
Tiefu Zhao, Eaton Corporation, USA	Spain
Joao Martins, Universidade Nova de Lisboa, Portugal	Vitor Pires, Instituto Politecnico de Setubal, Portugal
Youcef Soufi, University of Annaba, Algeria	Constantin N. Pavlitov, Technical University of Sofia, Bulgaria
Takaharu Takeshita, Nagoya Institute of Technology, Japan	Abdou Tankari Mahamadou, Universite Paris- EstCreteil Val de Marne, France
Paolo Mattavelli, USA	Byoung-Kuk Lee, Korea
Jin Hur, Korea	Necmi Altin, Gazi University, Turkiye
Po-Tai Cheng, Taiwan	Masahito Shoyama, Kyushu University, Japan
Masahito Ohnishi, Panasonic Corporation, Japan	Hisao Kubota, Meiji University, Japan
Toshihiko Noguchi, Shizuoka University, Japan	Okan Ozgonel, Ondokuz Mayis University, Turkiye
Faz Rahman, University of New South Wales, Australia	Haitham Abu-Rub, Texas A&M University, Qatar
Giorgio Sulligoi, Trieste University, Italy	Zareh Soghomonian, HII Newport News Shipbuilding
Jian-XinShen, Zhejiang University, China	Khaled Ahmed, Aberdeen University, UK
Abdelhakim Belkaid, University of Bordj Bou Arreidj, Algeria	Frede Blaabjerg, Aalborg University, Denmark
Fabio Viola, Scuola Politecnica - Universita, Italy Osamah Ibrahim Khalaf, Al-Nahrain University,	Tadatoshi Babasaki, NTT Facilities, Japan
Bagdat, Iraq	Jiann-Fuh Chen, Taiwan
Hideki Omori, Nagasaki Institute of Applied Science, Japan	Yung C. Liang, Singapore
H. J. Chiu, Taiwan	Shigeo Morimoto, University of Osaka, Japan
Tomonobu Senjyu, University of the Ryukyus, Japan	Yousuke Nozaki, NTT Facilities, Japan
C. K. Michael Tse, Hong Kong	Yoshito Tanaka, Nagasaki Institute of Applied Science, Japan
Fabio Viola, Palermo University, Italy	Brayima Dakyo, Le Havre University, France
Saad Mekhilef, Malaysia Adel Nasiri, University of Wisconsin in Milwaukee,	Dan M. Ionel, University of Kentucky, USA Jian Sun, USA
USA	
Henry Gueldner, Germany Thomas Fledli, ETH, Switzerland	Aleksandar Prodic, Canada Eiji Hiraki, Okayama University, Japan

	·····
Tomokazu Mishima, Kobe University, Japan	Hideitsu Hino, Waseda University, Japan
Zhongwei Guo, SHINDENGEN, Japan	Shinichi Hamasaki, Nagasaki University, Japan
Yuichi Yokoi, Nagasaki University, Japan	Enrique Romero-Cadaval, University of
	Extremadura, Spain
Jaeho Choi, Chunbuk National University, Korea	Kouzou Abdellah, Djelfa University, Algeria
Mark DehongXu, Zhejiang University, China	Nadir Kabache, University of Médéa, Algeria
Michele Pastorelli, Politecnico di Torino, Italy	Ahmed Tahour, High school in applied sciences
	Tlemcen, Algeria
Miguel Angel Sanz-Bobi, ComillasPontificial	Lixiang Wei, Rockwell Automation, USA
University, Spain	Lixiding wer, Rockwell Automation, USA
Luis Gomes, Universidade Nova de Lisboa, Portugal	Kazuhiro Kajiwara, Nagasaki Institute of Applied
Luis Gomes, oniversidade Nova de Lisboa, Portugal	Science, Japan
Sevki Demirbas, Gazi University, Turkiye	Vladimir Katic, NoviSad University, Serbia
Hirohito Funato, Utsunomiya University, Japan	Emil Levi, Liverpool John Moores University, UK
Narika Kawakami TMEIC Janan	Onder Eyecioglu, Bolu Abant Izzet Baysal
Noriko Kawakami, TMEIC, Japan	University, Turkiye
Isamu Moriguchi, Nagasaki University, Japan	M. Timur Aydemir, Gazi University, Turkiye
Korhan Kayisli, Gazi University, Turkiye	Nobukazu Hoshi, Tokyo University of Science, Japan
Alexis Kwasinski, University of Pittsburgh, USA	R.K. Mellon, Swanson School of Engineering
	University of Pittsburgh, USA
Thomas Fledli, ETH, Switzerland	Masahiro Asari, CRIEPI, Japan
Junichi Itoh, Nagaoka University of Technology,	
Japan	Renato Rizzo, Napoli University, Italy
Antonello Monti, Aachen University, Germany	Naci Genc, Van 100. Year University, Turkiye
Aleksandar Prodic, University of Toronto, Canada	Shubhransu Sekhar Dash, Srm University, India
Eklas Hossain, Oregon Tech., USA	Yen-Shin Lai, Taipei Tech, Taiwan
Shuji Tanabe, Nagasaki University, Japan	Nobuhiro Tajima, Male, President & CEO of Tajima
	Motor Corporation, Japan
Hiroo Sekiya, Chiba University, Japan	Giuseppe Schettino
Yuji Mizuno, Osaka Electro-Communication	Masahito Shoyama, Nagasaki Institute of Applied
University, Japan	Science, Japan
Kazuhiro Ohyama, Fukuoka Institute of Technology,	
Japan	Massimo Cariso, Palermo Univ., Italy
	·

TOPICS

Topics within the scope of the conference include the following areas, but not limited to:

- Renewable (Green) Energy Systems and Sources (RESSs) such as Wind Power, Hydropower, Solar Energy, Biomass, Biofuel, Geothermal Energy, Wave Energy, Tidal energy, Hydrogen Power Generation, Fuel Cells, Energy Storage
- RESSs for Electric Vehicles/Hydrogen Vehicles and Components
- New Trends and Technologies for RESSs
- Policies and Strategies for RESSs
- Energy Transformation from Renewable Energy System (RES) to Grid
- Novel Energy Conversion Studies for RESs
- Power Devices and Driving Circuits for RESs
- Control Techniques for RESs
- Grid Interactive Systems Used in Hybrid RESs
- Performance Analysis of RESs
- Hybrid RESSs
- Decision Support Systems for RESSs
- Renewable Energy Research and Applications for Industries
- Green Data Center
- Carbon Neutral Port (CNP)
- Artificial Intelligence and Machine Learning Studies for RESs and Applications
- Computational Methods for RESSs
- Energy Savings for Power Electronics, Vehicular Technology, Electric Machinery and Control, etc.
- RES Motor Drive
- New Approaches in Lightings
- Reliability and Maintenance in RESSs
- Smart grids and RESSs
- Safety and Security of RESSs
- Renewable Energy Systems in Smart Cities
- Future Challenges and Directions for RESSs
- IoT for RESSs
- Energy Management, VPP (Virtual Power Plant) and ERAB (Energy Resource Aggregation Businesses) for RESSs
- Model-based Design and Digital Twin for RESSs

LANGUAGE

The official language of the ICRERA conference is English

WELCOME to ICRERA 2024

Dear Colleagues,

The purpose of the International Conference on Renewable Energy Research and Applications (ICRERA) 2024 is to bring together researchers, engineers, manufacturers, practitioners, and customers worldwide to share and discuss advances and developments in renewable energy research and applications.

After the successes of the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, and eleventh editions of ICRERA in Nagasaki (2012), Madrid (2013), Milwaukee (2014), Palermo (2015), Birmingham (2016), San Diego (2017), Paris (2018), Brasov (2019), Glasgow (2020), Istanbul(2021), Istanbul(2022), Oshawa(2023), the 13th ICRERA 2024 is going to be organized by the technical co-sponsorship of IEEE IES and IAS in Nagasaki, Japan on November 9 – November 13, 2024. Attending ICRERA 2024 will benefit you by allowing you to meet well-known expert keynote speakers, tutorial organizers, special session organizers, and young colleagues from more than 60 countries.

It is our happiness to share with you that 100 selected papers at ICRERA2023 have been proposed for possible publication in

- IEEE Transactions on Industrial Applications (15 papers) cited in SCI-Expended,
- International Journal of Renewable Energy Research (15 Papers) cited in ESCI,
- International Journal of Smart Grid (20 papers) cited in Google Scholar,
- International Journal of Engineering Science and Applications (14 papers),
- and
- Electric Power Components and Systems (36 papers) cited in SCI-Expended.

Up to 2023, all papers presented by ICRERA have been cited in IEEE Xplore, SCOPUS, and Web of Science (Clarivate Analytics).

According to WEB of Science (Clarivate Analytics) in 2023;

h-index = 24 *Average citation per item* = 4.3 *5 Years Impact Factor* = 12.35

ICRERA aims to present important results to the international renewable energy community through research, development, applications, design, and technology. It is therefore intended to assist researchers, scientists, manufacturers, companies, communities, agencies, associations, and societies in keeping abreast of new developments in their specialties and uniting in finding alternative energy solutions to current issues such as the greenhouse effect and sustainable and clean energy issues.

Professor Fujio KUROKAWA, General Chair, ICRERA 2024

Professor Ilhami COLAK, Co-Chair, ICRERA 2024

Professor Takashi Abe, Co-Chair, ICRERA 2024

KEYNOTE SPEAKERS

Keynote 1: Professor Johann Walter Kolar, ETH Zürich, Switzerland Date : November 11, 2024 10.00-10.50 AM

Biography:

Johann W. Kolar joined the Swiss Federal Institute of Technology (ETH Zurich) in 2001 as the Head of the Power Electronic Systems Laboratory after spending 15 years as an international consultant and independent researcher. During his career, he has proposed numerous novel converter concepts, including the Vienna Rectifier and the Sparse Matrix Converter, spearheaded the development of x-million rpm motors, and pioneered fully automated multi-objective power electronics design procedures. He has personally supervised 90+ PhD students to completion, has extensively published in the IEEE Transactions, is named

inventor in numerous granted patents, and has received several awards. As a Prof. emeritus (since 08/2024), he is actively continuing to pursue research in ultra-compact/efficient WBG converter systems, AI and ML applications in power electronics, Solid-State Transformers, and the life cycle analysis of power electronics converter systems. He is an international member of the US National Academy of Engineering (NAE) and an IEEE Fellow.

Next-Generation SiC/GaN Variable Speed Drive Systems — "How to Handle a Double-Edged Sword"

Summary: Variable speed drive (VSD) systems should feature high power density and low installation costs, offer wide input and/or output voltage/motor speed ranges, and ensure low EMI without requiring shielded motor cables. Accordingly, next-generation high-switching speed / high-switchingfrequency SiC/GaN PWM inverters should integrate dv/dt or LC output filters to prevent conducted or radiated EMI, reflections on long motor cables, high-frequency motor losses, motor insulation stresses, and bearing currents. Moreover, buck-boost capability should preferably be implemented. The talk reviews state-of-the-art filter concepts and multi-level inverter topologies and describes new three-phase buck-boost PWM inverter systems and modulation/control concepts currently under research at the Power Electronic Systems Laboratory of ETH Zurich, which are partly based on novel monolithic four-quadrant GaN switches. Finally, voltage and current DC-link all-GaN AC/AC converter systems are comparatively evaluated, and advantageous application areas for both system types are identified.

Keynote 2: Mr. Masayuki Tobita Vice President of TMEIC, Japan Date : November 11, 2024 10.50-11.40 AM

Biography:

Mr. Masayuki Tobita graduated from master course of Electrical and Electronic Engineering, Tokyo Institute of Technology in 1994, where he majored in Power Electronics.

He joined Toshiba Corporation in April 1994, developed his carrier as the engineer and made excellent technical achievements in high-capacity power electronics applications. In October 2003, he moved to Toshiba Mitsubishi Electric Industrial Systems Corporation (TMEIC), Tokyo, Japan, when the joint venture between Toshiba and Mitsubishi-Electric was

established. At that time, he was Specialist of Power Electronics Department. He became Senior Manager of Power Electronics Department in 2013 and Senior Manager of Energy & Environment Power Electronics Systems Department in 2014. He became Senior Manager of Planning & Administration Department in 2017. He was President & CEO of Power Electronics Products Corporation in Houston from 2019. From June 2021 to present, he is Vice President of Power Electronics System division.

Power Electronics Contribution to Achieving Carbon-Neutral Society

Summary: The United Arab Emirates (UAE) hosted COP28 from the end of November 2023. There, the UAE, the US, the EU and other countries supported targets for preventing global warming, such as tripling global renewable power generation and doubling energy efficiency improvements by 2030. The targets highlight the power electronics as the essential key technology for achieving Carbon-Neutrality. In addition to these targets, to reach the goal, a revolutionary transition to clean energy is necessary by promoting electrification and Green Hydrogen application.

TMEIC continues to develop power electronics technology with the concept of "PEiE: Power Electronics in Everything." This presentation introduces Power Electronics solutions in the megawatt rang for industries striving Carbon-Neutrality.

The first topic covers the high-capacity Power Electronics technology to increase Renewable Energy. In the future, the Renewable Energy will dominate the electrical power networks in place of fossil-fueled generators, where Power Electronics technology will provide the grid-forming functions to Renewable Energy. Power Electronics also contributes to power transmission from remote Renewable Energy.

The second topic focuses on the Green Hydrogen. In heavy industries, some sectors rely on fossil fuels and are said hard to electrify. For such sectors, switching to clean fuels including Green Hydrogen can be a good solution. Mass-production of Green Hydrogen requires high-capacity Power Electronics technology, that harmonizes with the future power networks.

The third topic addresses the power supply to the digital networks for information and communication. In the future, the digital networks will dynamically manage the energy networks operation. It is important to remember that the digital networks need the electric power. The Power Electronics technology provides reliable and high-efficiency power supply solutions.

The final topics introduces the Power Electronics applications in the tens of megawatt range to electrify largescale processes. Additionally, the high-capacity Power Electronics systems improve energy efficiency by optimally managing various megawatt -rated processes.

Keynote 3: Professor Kan Akatsu Yokohama National University, Japan Date : November 12, 2024 9.00-9.50 AM

Biography:

Kan Akatsu received B.S., M.S., and Ph. D degrees in electrical engineering from Yokohama National University, Yokohama, Japan, in 1995, 1997, 2000 respectively.

He joined Nissan Research Center, Yokosuka, Japan, in 2000, he contributed to the design and analysis of the new concept permanent magnet machines. In 2003, he joined the department of Electrical and Electric Engineering at Tokyo University of Agriculture and Technology, Tokyo, Japan, as an assistant professor. From 2005 to 2007, he is a

JSPS Postdoctoral Fellowship for Research Abroad, visiting professor in WEMPEC (Wisconsin Electric Machines and Power Electronics Consortium), University of Wisconsin-Madison. From 2009, he was an associate professor, and he was a full professor in Shibaura Institute of Technology, Tokyo, Japan. From October 2019, he is a professor in Yokohama National University.

High performance motor drive techniques by multiple inverters

Summary: Recent development of power devices leads to high power density and high efficiency in the motor drive. Especially for the EV traction motor, high power machine drive technique driven by multiple inverters have been developed. Usually the multiple inverter drive has an advantage for the fault tolerance system, however, recent motor design techniques including multi-phase motor can fully utilize the advantage of multiple inverter.

This talk summarizes motor drive systems using multiple inverters, and describes their advantages, control technology that is only possible with multiple inverters based on teeth flux density control, and applications to magnetic flux density vector control.

Keynote 4: Dr. Hitoshi Hayashia East Japan Railway Company, Japan Date : November 12, 2024 9.50-10.40 AM

Biography:

1970 Born in Tokyo, Japan

1994 Graduated from the University of Tokyo

1996 Received Master Degree from graduate school of the University of Tokyo

1999 Received Doctor Degree from graduate school of the University of Tokyo

1999-2002 Assistant Professor of the University of Tokyo

2002-now East Japan Railway Company

- Jul.2002-Sep.2006 R&D Center of JR East Group

- Oct.2006-Jun.2008 Ohmiya Maintenance Depot of traction power supply system for High Speed Railway

- Jun.2008-Mar.2016 Manager of Electrical & Signal Network System Department, Railway Operations Headquarters

- Apr.2016-Jun.2018 Manager of Traction power supply of Tokyo Branch Office - Jun.2018-now General Manager of Traction power supply technology management center

2022-2024 President of industry applications society of IEEJ (Institute of Electrical Engineering, Japan)

Trends of challenges to zero carbon by railway companies in Japan

Summary: Electric railways have environmental advantages compared with other transportations such as cars, aircrafts, and so on. On the other hand, electric power consumption in the railway sector is 17.5TWh/year, which corresponds to about 2% of the total consumption in Japan. Under these circumstances, many Japanese railway companies have conducted and are planning various efforts to reduce CO2 emissions aiming to achieve carbon neutrality by 2050.

This presentation will focus on some specific initiatives about decarbonization in Japanese railway, such as improvements in efficiency and energy control on rolling stock through replacements, further utilization of regenerative energy by introducing equipment such as energy storage systems or adjusting feeder voltage, energy saving efforts at stations or buildings, installing or procuring of renewable energy, implementing energy saving driving control patterns and so on.

In this keynote presentation, some specific examples of them will be explained in detail including technological prospects of electric railway. The other important issues surrounding railway industry such as labor shortage and sustainable infrastructure in the future will be also mentioned.

Keynote 5: Professor Huang-Jen Chiu National Taiwan University of Science and Technology, Taipei Date : November 12, 2024 11.10-12.00 AM

Biography:

Huang-Jen Chiu has been with the Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, where he is currently a Distinguished Professor, Dean of Research and Development. He served as the Dean of Industry-academia Collaboration during 2018-2020 and the Director of Center for Power Electronic Technologies during 2014-2022. His research interests include high efficiency/ high power density bidirectional DC/DC converters, PFC topologies, PV inverters, and DSP

control in renewable energy applications.

Dr. Chiu is a Fellow of the Institute of Engineering and Technology (IET), a Fellow of Taiwan Power Electronics Association (TaiPEA) and selected as the Distinguished Lecturer of IEEE Power Electronics Society (2017-2018, 2019-2020). He is currently an Editor of IEEE Journal of Emerging and Selected Topics in Power Electronics (JESTPE).

High Power Density and High Frequency Converter Design

Summary: Owing to the energy shortage and the rising awareness of environment protection, not only makes people pay attention to energy saving issue, but jointly affect the development trend of power electronic industries. According to the roadmap of power electronics industries, it includes improving energy conversion efficiency, decreasing components and increasing power density. The talk particularly focuses on high power density AC-DC/ DC-DC/ DC-AC conversion techniques for information technology, electric vehicles, and renewable energy applications.

TUTORIALS

Tutorial 1: High efficiency switching control for power converters and motor drives

Date : November 9, 2024 10.00-11.30 AM

Organizer: Professor Yen-Shin Lai, National Taiwan University of Science and Technology, Taipei, Taiwan

Biography:

Yen-Shin Lai (M'96–SM'01–F'14) received the MS degree from National Taiwan University of Science and Technology, Taipei, Taiwan, and the Ph.D. degree from the University of Bristol, Bristol, England, U.K., both in electronic engineering.

In 1987, he joined the Department of Electrical Engineering, National Taipei University of Technology, Taipei, where he served as the Chairperson during 2003–2006 and has been a Full Professor since 1999,

a Distinguished Professor since 2006, and a Chair Professor since 2013. His research interests include control of power converters, inverters, and motor drives.

High efficiency switching control for power converters and motor drives

Summary: The scope includes the switching control methods for efficiency improvement of power converters. AC-DC, DC-DC and DC-AC converters will be introduced. Both single and multi-phase converters will be introduced. The efficiency can be improved by changing switching control method without requiring additional hardware cost, basically. The applications of the introduced AC-DC, DC-DC and DC-AC converters include server power and motor drives.

Tutorial 2: Onboard Energy Storage Systems for Rail Vehicles: Challenges and Perspectives

Date : November 9, 2024 9.00-11.30 AM

Organizer: Professor Rosario MICHELI, Palermo University, Italy

Biography:

Rosario Miceli received the B.S. degree in electrical engineering and the Ph.D. degree from the University of Palermo, Palermo, Italy, in 1982 and 1987, respectively. He is a Full Professor of electrical machines with the Polytechnic School, University of Palermo. He is a Personnel in Charge of the Sustainable Development and Energy Savings Laboratory of the Palermo Athenaeum. His main research interests include mathematical models of electrical machines, drive system control, and diagnostics,

renewable energies, and energy management. Prof. Miceli is in charge for the University of Palermo of the "European Union - NextGenerationEU – National Sustainable Mobility Center". He is a Reviewer for the IEEE Transactions on Industrial Electronics and the IEEE Transactions on Industry Applications.

Onboard Energy Storage Systems for Rail Vehicles: Challenges and Perspectives

Summary: The railway sector, renowned for its relatively low carbon footprint compared to other modes of transport, has faced challenges in achieving complete electrification, particularly for mediumand low-traffic routes. While traditional electric trains offer zero local emissions, the high investment costs and infrastructure modifications associated with electrification can be prohibitive. In certain cases, physical or legal constraints may entirely preclude external electrification.

To address these limitations and contribute to global climate goals, rolling stock manufacturers have increasingly integrated onboard energy storage systems (OESS) into rail vehicles. OESS, including batteries, supercapacitors, and hydrogen fuel cells, enable trains to operate catenary-free, reducing emissions and eliminating the need for infrastructure modifications.

While OESS offer numerous benefits, such as energy efficiency through regenerative braking, reduced load on the electrical grid, and zero local emissions, their integration into rail vehicles presents significant challenges related to design, operation, reliability, safety, and cost. The demanding operational and regulatory conditions specific to the railway sector can further exacerbate these challenges.

This keynote will provide a comprehensive overview of onboard energy storage technologies for rail vehicles, exploring their current status, characteristics, and potential applications. It will discuss the various powertrain configurations and energy management strategies employed in OESS-equipped trains. Additionally, the challenges associated with OESS adoption and future trends in this field will be examined, with a focus on the transition towards climate-neutral rail transport.

Tutorial 3: Design of Magnetic Resonance Wireless Power Transfer with Load-Independent Technology

Date : November 9, 2024 13.00-14.30 PM

Organizers: Professor Hiroo Sekiya Chiba University, Chiba, Japan Professor Xiuqin WEI Chiba Institute of Technology, Chiba, Japan

Biography:

Hiroo Sekiya received the B.E., M.E., and Ph.D. degrees in electrical engineering from Keio University, Yokohama, Japan, in 1996, 1998, and 2001, respectively. Since April 2001, he has been with Chiba University, Chiba, Japan, where he is currently a Professor in the Graduate School of Informatics. From February 2008 to February 2010, he was also with the Department of Electrical Engineering, Wright State University, Dayton, OH, USA, as a Visiting Scholar. His research interests include high-frequency high-efficiency tuned power amplifiers, resonant dc/dc power converters,

dc/ac inverters, and digital signal processing for wireless communications. Dr. Sekiya is serving BoG member of IEEE CASS, Chair of PELS JJC, and Chair of TC on Energy Engineering in Electronics and Communications, IEICE. He is also Fellow of the IEICE, member of IETJ, and senior member of IEEE.

Biography:

Xiuqin WEI received a Ph.D. in Advanced Integration Science from Chiba University, Chiba, Japan, in 2012. She is currently a Professor in the Department of Electrical and Electronic Engineering at Chiba Institute of Technology, Chiba, Japan. Her research interests include high-frequency and high-efficiency power inverters, AC-DC converters, DC-DC converters, and wireless power transfer.

Design of Magnetic Resonance Wireless Power Transfer with Load-Independent Technology

Summary: The importance of renewable energy is widely acknowledged. However, the various green energies are ultimately converted into electrical energy, and we all use the energy for our society richen. Therefore, increasing the convenience of charging terminals (the final stage of energy transfer) will directly lead to our life. In this sense, wireless power transfer is a technology that should play a significant role in enhancing convenience. The practical application of wireless power transfer will afford greater freedom in the installation of electrical and electronic equipment and will enable us to optimize the effectiveness of renewable energy.

In this talk, I will discuss the magnetic resonance type of wireless power transfer, which can provide a solution to the problems of load variations and coupling-coil misalignment, which are the essential problems of magnetic resonance type wireless power transfer, by using a special technique called load independent technology.

Tutorial 4: Smart Grids for green and sustainable energy transitionDate: November 9, 2024 13.00-14.30 PM

Organizer: Professor Dr. Ing. Youcef SOUFI University Echahid Larbi Tebessi, Tebessa, Algeria

Biography:

Youcef SOUFI received the B.Eng. (1991) and PhD degree (2012) from the University of Annaba, Algeria in Electrical Engineering. Since 2000 he has been with the Department of Electrical Engineering, Laboratory of Electrical Engineering at the University Echahid Larbi Tebessi, Tebessa, Algeria where: He is currently a full Professor in electrical engineering. His main and current major research interests include application of Artificial intelligence in electrical engineering, Renewable energy, electrical

machines control, power electronics and drives. He has published and co-authored more than 200 technical papers in scientific journals and conference proceedings since 2000. He is the member of editorial board of many journals and the member of technical program committee / international advisory board/ international steering committee of many international conferences.

Smart Grids for green and sustainable energy transition

Summary: Smart Grid is now the buzzword in the power industry all over the world. The rise of smart grid is a boon not only to society as a whole but to all who are involved in the electric power industry, its customers, and its many stakeholders. It presents our planet with a revolutionary way of power transmission and distribution. It has even paved the way for many advanced forms of data prediction and handling, where the increased awareness of the environmental impact and the carbon footprint of all energy sources, including electric power production, have given impetus to the growth and adopting of renewable as well as alternative energy.

The modernization of electric grids toward a smart grid is being carried out to improve reliability, facilitate integration of renewable energies, and improve power consumption management. Also, the electric power systems throughout the world are facing radical change stimulated by the pressing need to decarbonize electricity supply, to replace ageing assets and to make effective use of rapidly developing information and communication technologies. Thus, the development and the implementation of a smart grid for power supply is one of the pressing issues in modern energy economy and it is promoted by many governments as a way of handling energy independence, global warming and security of supply based on the introduction of modern communications infrastructure, sensing, metering technologies, and modern energy management techniques based on the optimization of demand, energy and network availability.

This presentation addresses critical issues on smart grid Challenges, development and Opportunities where the main objective of this presentation is to provide a contemporary look at the current state of the art in smart grid as well as to provide a better understanding of the technologies, potential advantages and research challenges of the smart grid and provoke interest among the research community to further explore this promising research area.

Tutorial 5: Energizing Change "Unlocking Blockchain's Role in Socially Implementing the Future of Energy" Date : November 9, 2024 13.00-14.30 PM

Organizer: Dr. Jason Nye UPCX-Platforms. Seattle, United States

Biography:

Dr. Jason Nye holds a PhD from the University of St Andrews (UK) and has held teaching positions at the University of Dundee (UK), the University of St Andrews (UK) and the Johannes Gutenberg Universität Mainz (Germany). After departing academia in 2001, he joined the U.S. Department of State where he was responsible for advising the Secretary of State, the National Security Council, and the White House on global trade matters, including sensitive goods. During his government

experience he contributed to the negotiation of the U.S. free trade agreement with the Republic of Korea. He also frequently served as the U.S. Department of State's representative to the National Intelligence Council and numerous interagency groups. Dr. Nye also represented the United States Government as its lead delegate to NATO committees and to the Wassenaar Arrangement, an international export controls body. Since leaving U.S. Government service in 2008, Dr. Nye has been involved in international trade and finance, with many high-profile activities in strategic sales, regulatory compliance, fundraising, and export credit finance while expanding global economic relationships. His business activities have contributed heavily to Asia-Pacific security through defense trade between the U.S. and East Asian Allies, and to energy security by assisting investments into energy production and infrastructure in East Asia and North America. Dr. Nye also contributed to the establishment of two international consulting-advisory firms, a global fund, and also served as CEO of a Japan-U.S. advanced energy technology joint venture. In his early career, Dr. Nye was enlisted as a reconnaissance infantryman in the United States Marine Corps.

Energizing Change

"Unlocking Blockchain's Role in Socially Implementing the Future of Energy"

Summary: In recent years, the energy sector has been compelled to transform due to environmental issues, resource depletion, and the rise of renewable energy. Within this context, blockchain technology holds the potential to enhance transparency and efficiency.

Blockchain serves as a decentralized ledger that prevents data tampering, improving the transparency of energy transactions and consumption data. This enables direct trading between consumers and producers, as well as automated transactions through smart contracts, leading to potential cost reductions.

However, the implementation of blockchain also faces challenges, including technical hurdles, regulatory frameworks, consumer understanding, and security concerns.

In this lecture, we will explore the impact of blockchain on the energy industry and propose specific approaches for improving existing systems by presenting several use cases. Our goal is to outline a path toward building a sustainable energy society, and we look forward to your participation.

Tutorial 6: Supercapacitor Assisted Power Converters and Protection Systems for
DC Homes and DC Appliances Based on Renewable EnergyDate: November 9, 2024 15.00-16.30 PM

Organizer: Professor Nihal Kularatna School of Engineering Teaching and Research University of Waikato, HAMILTON, New Zealand

Biography:

Nihal Kularatna is an electronics engineer with over 48 years of contribution to profession and research. He has authored ten reference books for practicing electronic engineers including the two consecutive IET Electrical Measurement Series books titled Modern electronic test & measuring instruments (1996) and Digital and analogue instrumentation-testing and measurement (2003/2008) and five Elsevier (USA) titles. His latest research monograph on sustainable energy and energy storage

systems, titled Energy Storage Devices for Renewable Energy Systems: Rechargeable Batteries and Supercapacitors, was published by Elsevier in June 2021, summarizing his applications-oriented research during the last five years, supervising many PhD students at the University of Waikato, New Zealand. He was the winner of New Zealand Engineering Innovator of the Year 2013 Award. In 2021, he won the Postgraduate Research Supervision Staff Excellence Award. He was the first full-time CEO of the Arthur C Clarke Institute for Modern Technologies A Fellow of the IET (London), Fellow of Engineering NZ and a Senior Member of IEEE (USA) and a graduate from the University of Ceylon, during his industrial career at the Arthur C Clarke Institute for Modern Technologies, he was a winner of Presidential Awards for Inventions-1995, the Most Outstanding Citizens Awards-1999 and a TOYP Award in 1993. In 2015, University of Waikato conferred him with a DSc degree for his thesis titled "Contributions to Power Management, Telecommunications and Telecommunications- A Three Decade Journey". He is currently active in research in non-traditional supercapacitor applications, power supply topologies, transient propagation and renewable energy. He has contributed over 175 papers to learned journals and international conferences. His work on supercapacitor assisted (SCA) circuit topologies/techniques such as SCALDO, SCASA and SCATMA culminated numerous US, NZ and PCT patents. He is presently employed as an Associate Professor in the School of Engineering, the University of Waikato, New Zealand. At international IEEE conferences and industry trade shows he frequently delivers invited tutorials, workshops and lectures on subjects he is passionate about, including the area of innovation and commercialization. His hobbies are gardening and car-grooming.

Supercapacitor Assisted Power Converters and Protection Systems for DC Homes and DC Appliances Based on Renewable Energy

Summary: Supercapacitors are typically one million larger capacitances for the same canister volume compared to electrolytic and film capacitors. Today commercial devices come in capacitance values ranging from fractional farads to 100,000 farads (per single cell) with life cycles in the range of 30 k to 1 million. They have a several orders higher power density than li-ion rechargeable batteries with a much wider operational temperature range. However, they haven't reached the energy density of rechargeable battery chemistries. Based on the low equivalent series resistance (ESR) property of supercapacitors, a unique new family of power converters and protection systems, now known as Supercapacitor Assisted (SCA) techniques was developed. These patented SCA techniques such as SCA-low dropout regulator (SCALDO), SCA-surge absorber (SCASA), SCA-temperature modification apparatus (SCATMA) and SCA-LED are based on a new theory now published as SCA loss management (SCALOM) theory. The tutorial will present how we can develop extra low frequency DC-DC converters (based on SCALDO), high performance transient surge absorbers (based on SCASA) and high efficiency DC lighting (SCALED based) in addition to how this new approach could help in new directions for DC homes and DC appliances etc.

Tutorial 7: Modeling of Reneables and Storages in PyPSA and Julia tools: case study for electricity system of Kazakhstan Date

: November 9, 2024 15.00-16.30 PM

Organizer: Dr. Nurkhat Zhakiyev Assoc. Prof. Senior Researcher at Astana IT University, Kazakhstan

Biography:

Dr. Assoc.Prof. Nurkhat Zhakiyev is a Senior Researcher of Astana IT University, Kazakhstan. His research interests include the field of advanced computer modeling of energy systems, mitigation of losses in corona discharge, Climate change mitigation expert at UNDP. Supervisor of several research projects on the energy system modelling and integration of renewables. March 2022- March 2023, Postdoctoral Researcher of Engineering Faculty, Gazi University, (Ankara, Türkiye) funded by IsDB.

Participated in post 2020 NDC updating project and on linking of CGE (top-down) model of Kazakhstan with TIMES-Kazakhstan (bottom-up) energy system model (PMR/World Bank Project for Kazakhstan, 2016 and 2020). Involved in preparation of Mitigation and Projections chapters of National communications and Biennial reports of Kazakhstan on Climate change (under UNFCCC). Author of more than 35 papers published on international Journals and reviewer for many ISI journals.

Modeling of Reneables and Storages in PyPSA and Julia tools: case study for electricity system of Kazakhstan

Summary: Developments in the fields of renewable energy, energy storages, and digitalization have led to a change in the trends of the components of the mix of types of energy sources: there has been a shift from the use of conventional fuel energy carriers to green energy, where renewable energy influenced with high importance. Renewables are a key energy solution against climate change. Only the development of green energy and the introduction of energy efficiency measures can reduce GHG emissions, according to the Strategy of Kazakhstan up to "Net-Zero" by 2060. Will be discussed and compared different development scenarios for allocation of high share of renewables.

Each storage system as an independent Agent of the energy system will be modeled by focusing on individual cost-benefit maximization behavior in the system. In agent modeling, the parameters of active agent objects are first set, and their behavior is determined. Regional energy service companies, generating facilities, industrial consumer companies, etc., will be represented as other agents in the system. Individual dispatching schedules of each agent will be simulated in GAMS, PyPSA, and Julia environments. Discrete-event modeling and system dynamics will show the best solution for separate scenarios.

In this tutorial session will be described research analyzing steps for different tools in using renewables with storages as a new electricity market design. The accuracy and productivity of the models also will be tested and will be presented at the conference.

Tutorial 8: PWM Control of Three-Level Neutral Point Clamped Converters for High Power Applications

Date : November 10, 2024 10.00-11.30 AM

Organizer: Dr. Shinzo Tamai Toshiba Mitsubishi-Electric Industrial Corporation (TMEIC), Power Electronics Systems Division, Kobe, Hyogo, Japan

Biography:

Dr. Shinzo Tamai is currently Senior Fellow in the Power Electronics Systems Division at TMEIC corporation, where he has held several leadership positions in power electronics projects.

He received his B. S., M. E., and Ph. D. degrees in electrical engineering from the Tokyo Institute of Technology in 1981, 1983, and 2004, respectively. He joined Mitsubishi-Electric Corporation in 1983. He has been engaging the projects of the development of largecapacity three-level

NPC converters and their applications to motor drives and static synchronous compensators (STATCOMs) and back-to-back (BTB) transmission systems. In 2003, he moved to TMEIC that is the joint venture in industrial systems of Toshiba and Mitsubishi-Electric Corporation. He is a Fellow of the IEEE and a Fellow of the IEE-Japan.

PWM Control of Three-Level Neutral Point Clamped Converters for High Power

Applications

Summary: There are some PWM control methods proposed for three-level neutral-point-clamped (NPC) converters. In large capacity converters, the switching frequency of power semiconductors is relatively low. I will share some PWM control methods and their harmonics characteristics in the output voltage within large capacity converter constraints.

Tutorial 9: AI, Big Data Analytics, Security and Privacy Issues in Smart Energy Systems

Date : November 10, 2024 10.00-11.30 AM

Organizer: Professor Seref Sagiroglu Gazi University, Ankara, Turkiye

Biography:

Prof. Dr. Seref Sagiroglu completed his undergraduate education in 1987 at Erciyes University, Department of Electronics Engineering, and his doctoral studies at the University of Wales College of Cardiff (now Cardiff University, UK) in 1994. He continues his academic career as a full professor of software engineering at Gazi University's Computer Engineering Department.

Sagiroglu has an outstanding academic with more than 8000 citations; almost 400 articles published in SCI/SSCI indexed journals, national and international conferences, symposium and workshops, editor of more than 20 books, owns 4 patents, and has completed national and international projects on security, big data, intelligent modeling and control, biometric, etc.

Sagiroglu organized more than 50 national and international events on artificial intelligence, 5G, Big Data, Machine Learning, Deep Learning, Information and Cyber Security, Privacy, IPv6, etc., as a chairman or co-chairman. Sagiroglu had such duties as President and Executive Committee Members of those NGOs; completed the duties as the Deans of Graduation School of Science and Technology and Engineering Faculty, and Head of Computer Engineering Department at Gazi University; Editors of International Journal of Information Security Science (www.ijiss.org); International Journal of Information Security Science (www.dergipark.gov.tr/ubgmd) and CyberMag (www.cybermag.com); Member of Cyber Security Group of Higher Education Council of Turkey; contributed to consultants to Havelsan; IT Regulatory Body of Turkey and Personal Data Protection Regulatory Body of Turkey; has delivered as invited or keynote speakers more than 500 seminars, talks, conferences at universities, schools, sectors, TV and Radio Programs, institutions and organisations in the topics of Information Security, Big and Open Data, Cyber Security and Defense, Artificial Intelligence, Computer and Software Engineering, Privacy, Biometrics, Innovation Culture Creation, IPv6, 5G, etc. He is now the director of the AI and Big Data Center of Gazi University, Ankara, Turkey, and also is the president of the Chamber of Electrical Engineering Ankara Branch.

AI, Big Data Analytics, Security and Privacy Issues in Smart Energy Systems

Summary: Big data and AI have great potential to provide opportunities not only energy systems but also many other fields enhancing technical, organizational, social, and economic gains and contributions. The current potential of applying big data and AI approaches for better planning, managing, designing, and securing power grid systems and operations is a big challenge to be handled seriously. This talk will cover big data, ai, generative ai, security, privacy, cost, management, planning, and integration of those into energy and power grid systems. Recent challenges are also summarised and concluded.

Tutorial 10: DC Microgrids: Benefits, Architectures, Perspectives and ChallengesDate: November 10, 2024 10.00-11.30 AM

Organizer: Professor V. Fernao Pires Polytechnic Institute of Setubal, Portugal

Biography:

V. Fernão Pires (M'96–SM'09) received the B.S. degree in Electrical Engineering from Institute Superior of Engineering of Lisbon, Portugal, in 1988 and the M.S. and Ph.D. Degrees in Electrical and Computer Engineering from Technical University of Lisbon, Portugal, in 1995 and 2000, respectively.

Since 1991, he has been a member of the teaching staff with the Electrical Engineering Department, Superior Technical School of Setúbal—

Polytechnic Institute of Setúbal. He is currently a Professor teaching power electronics and control of power converters. He is also a Researcher with the Instituto de Engenharia de Sistemas e Computadores—Investigação e Desenvolvimento em Lisboa (INESC-ID). His work has resulted in more than 300 publications. He is member of IEEE since 1996 and senior member since 2009. He is currently serving in IEEE IES Technical Committee in Power Electronics. He is an evaluator of research proposals for several international funding agencies

He was the general chair of the international conference icSmartGrids 2021, icSmartGrids 2024 and general co-chair of the IEEE CPE-POWERENG 2020. He was also one of the founders of the IEEE POWERENG conference series. He has been Program Committee and/or Track Chair member of several international conferences (IECON, ISIE, CPE, ICELIE, POWERENG, ICMLA, INTELEC, ICRERA, ICPEA, PEMC, TENSYMP, BEC, ICEEEP, SMARTGREENS, GreenCom).

DC Microgrids: Benefits, Architectures, Perspectives and Challenges

Summary: One of the major paradigm shifts that will likely be observed in the energy mix is related to distribution networks. Until now, this type of electrical grids was characterized by an AC transmission. However, a new concept is emerging, as the electrical distribution networks characterized by a DC transmission begin to be considered as a promising solution due to technological advances. In fact, we are now witnessing a proliferation of DC equipment associated with renewable energy sources, storage systems and loads. Thus, such equipment started to be considered in different contexts. In this way, taking into consideration the requirement for a fast integration of these equipment's into the existing electrical network, DC networks started to become important. On the other hand, the importance of the development of these DC networks is not only due to the fact that today the number of DC equipment's started to be huge. In reality, when compared with the classical AC transmission systems, the DC networks are considered more efficient and reliability, as well as, does have any issues regarding the reactive power and frequency control and synchronization. Although much research work has been done, several technical aspects have not yet been defined as standard. This uncertainty is still an obstacle to a faster transition to this type of network. There are also other aspects that still need to be focused of study and research in order to allow this technology to become a day-to-day solution. Finally, there also many applications in which this kind of DC microgrids can be applied, but still not addressed. Thus, all these aspects are considered as important challenges that need to be addressed. This talk will address an overview of the existing and possible solutions for this type of microgrid, as well as the challenges that need to be faced now.

Tutorial 11: A Comprehensive Microgrid Test Model Based on IEEE Distribution Test System for Smart Grid Transition Analysis

Date : November 10, 2024 10.00-11.30 AM

Organizer: Professor I. Ewean Davidson, Cape Peninsula Univ of Technology, South Africa Dr Elutunji Buraimoh Clemson University, USA

Biography:

Innocent Ewean Davidson, (Senior Member, IEEE) received the B.Sc. (Eng.) (Hons) and MSc (Eng.) degrees in Electrical Engineering from the University of Ilorin, in 1984 and 1987, respectively, Ph.D. degree in electrical engineering from the University of Cape Town, in 1998; and the PG Diploma degree in Business Management, from the University of KwaZulu-Natal, in 2004. He also received Associate Certificate in Sustainable Energy Management (SEMAC), from the British Columbia

Institute of Technology, Burnaby, BC, Canada, in 2011, and the Course Certificate in Artificial Intelligence, from the University of California at Berkeley, USA in 2020. He is a Full Professor and Director, French South African Institute of Technology (F'SATI), and the African Space Innovation Center (ASIC), Cape Peninsula University of Technology (CPUT), Bellville, South Africa. He has supervised six postdoctoral research fellows and graduated 63 Ph.D./Masters' students and over 1200 engineers, technologists, and technicians. He is the author/co-author of 405 technical papers in accredited journals, and peer-reviewed conference proceedings and book chapters. He has managed over US\$3 million in research funds. His current research interests include Space and CNS Innovation, smart grids, electromagnetics and applied artificial intelligence. He is a Fellow grade of the Institute of Engineer in the U.K.; and a registered Professional Engineer (P Eng.), of the Engineering Council of South Africa. He is a member: Western Canada Group of Chartered Engineers (WCGCE); the Institute of Engineering and Technology (IET Canada) British Columbia Chapter; IEEE Collabratec Communities on Smart Cities and IEEE (South Africa Chapter). He is a recipient of numerous international Best Paper Awards. He is a C2-rated researcher from the National Research Foundation (NRF), South Africa.

Biography:

Dr Elutunji Buraimoh is a Researcher who focuses on developing communication latency prediction and compensation techniques in realtime power system co-simulation, i.e., simulation of a single complex system by more than one real-time digital simulator located in geographically separated laboratories integrated virtually via a high-speed computer network.

Elutunji conducted previous doctoral research as a D.Eng. (Doctor of Engineering) at the Smart Grid Laboratory, the Durban University of Technology, and the DEEPER Research Group, University of Valladolid, Spain, with a focus on developing novel strategies to make inverterbased renewable energy sources grid code compliant, smart, and grid-interactive. Recognized with research awards, including the Durban University of Technology D.Eng. Scholarship Award (Energy Research Focus Area) 2018–2020 and the Best Paper Award (third place) at the Clemson University Power Systems Conference 2020. Received a European Union Scholarship for International Exchange at the University of Valladolid, Spain, under the Erasmus+ KA107 Project. Also, awarded citation recognition at the 2020 Durban University of Technology Research and Innovation Award. Elutunji Buraimoh holds a B.Tech. (Hons.) degree in electronic and electrical engineering from Ladoke Akintola University of Technology, Nigeria, and an M.Sc.degree in electronic and electrical engineering from Obafemi Awolowo University, Nigeria.

Elutunji served as a Guest Editor, Modern Electric Power Delivery Systems, Energies Special Issue and Editor/Publication Chair, 30th South African Universities Power Engineering Conference/Proceedings.

A Comprehensive Microgrid Test Model Based on IEEE Distribution Test System for Smart Grid Transition Analysis

Summary: The transition to Smart Grids represents a significant evolution in the management and operation of electrical grids, aiming to enhance efficiency, reliability, and sustainability. To facilitate this transition, robust and versatile test models are crucial for simulating and analyzing various scenarios and challenges. In this tutorial, we will develop a Microgrid test model based on a typical IEEE distribution test system, designed to support a wide range of studies and applications related to Smart Grids. The proposed Microgrid model comprises both direct current (DC) and alternating current (AC) buses, accommodating different types of loads and distributed generation sources across two voltage levels. This dual-bus configuration enables the study of interactions between DC and AC systems, which is pivotal for the development of integrated energy systems. The Microgrid includes a variety of load types, such as residential, commercial, and industrial, along with distributed generation sources like photovoltaic panels, wind turbines, and energy storage systems. A complete model of the proposed Microgrid has been developed and simulated using the MATLAB-Simulink simulation platform. MATLAB-Simulink offers a flexible and powerful environment for modeling, simulating, and analyzing complex electrical systems.

This platform enables the integration of various components and control strategies, facilitating comprehensive studies on the performance and behavior of the Microgrid under different operating conditions. The proposed electrical system provides a robust base case for a wide array of advanced studies, including but not limited to: Investigating the dynamic stability and inertia characteristics of the Microgrid, crucial for maintaining system stability under transient conditions; Analyzing methods to manage reactive power in the Microgrid to improve voltage stability and reduce losses; Evaluating the reliability and resilience of the Microgrid in the face of component failures and external disturbances; Exploring demand response strategies to balance supply and demand, enhance grid flexibility, and reduce peak loads; Implementing and testing multi-layered control approaches to optimize the operation of the Microgrid and Applying optimization algorithms to enhance the efficiency, cost-effectiveness, and sustainability of the Microgrid; its interaction with the main grid; Developing and assessing control methods that ensure the continuous operation of the Microgrid despite faults or malfunctions; and Studying the integration and management of energy storage systems to support grid stability and reliability. A typical IEEE-based MG test model presented in this tutorial is a comprehensive and versatile tool for advancing research in the field of Smart Grids. By providing a detailed and flexible platform for simulation and analysis, this model supports a wide range of studies aimed at improving the performance, reliability, and efficiency of future electrical grids. The insights gained from these studies will contribute significantly to the development and implementation of innovative solutions for the transition to Smart Grids.

Tutorial 12: The Neutral-Point-Clamped Inverter and Instantaneous-PowerTheory: How They Emerged in the Early 1980'sDate: November 10, 2024 15.00-16.30 PM

Organizer: Professor Hirofumi Akagi Tokyo Institute of Technology, Tokyo, Japan

Biography:

Hirofumi (Hiro) Akagi was born and grew up in Okayama, Japan. He received his Ph. D. degree in electrical engineering from the Tokyo Institute of Technology, Tokyo, Japan, in March 1979. Immediately, he joined the Nagaoka University of Technology as Assistant Professor, and then, Associate Professor. He moved to Okayama University as Professor in August 1991. Since January 2000, he has been Professor, currently Distinguished Professor, at the Tokyo Institute ofmTechnology. His

research interests include power conversion systems and their applications to industry, transportation, and electric power utility. He has authored and coauthored 148 IEEE Transactions/Journal papers, including three invited papers published in Proceedings of the IEEE. His papers and patents have garnered more than 67,000 citations with an h-index of 106, according to Google Scholar.

Dr. Akagi received many awards, including IEEE Fellow and Life Fellow recognitions in 1996 and 2020, respectively, the 2001 IEEE PELS William E. Newel Award, the 2004 IEEE IAS Outstanding Achievement Award, the 2008 IEEE Richard H. Kaufmann Award, the 2012 IEEE PES Nari Hingorani Custom Power Award, 2018 IEEE Medal in Power Engineering, and the 2020 EPE (European Power Electronics and Drives Association) Gaston Maggetto Medal. He is the world's first, and currently sole, recipient of both IEEE and EPE Medals. He served as the President of the IEEE Power Electronics Society from 2007 to 2008 for two years, and as the IEEE Division II Director from 2015 to 2016 for two years.

The Neutral-Point-Clamped Inverter and Instantaneous-Power

Theory: How They Emerged in the Early 1980's

Summary: This tutorial will disclose unknown success stories of the three-phase three-level neutralpointclamped (NPC) inverter and the three-phase instantaneous-power theory or p-q theory. Both inverter and theory emerged from the Technological University of Nagaoka (currently the Nagaoka University of Technology), Nagaoka, Japan, in the early 1980's. Behind that, there were technical advances in power bipolar junction transistors (BJTs) all through the 1970's.

Nabae, Takahashi, and Akagi designed, built, and tested an adjustable-speed motor drive that combined the three-phase NPC inverter using 12 BJTs, 12 free-wheeling diodes, and six clamping diodes with a three-phase induction motor. They presented the world's-first short paper with experimental results at a Japanese domestic conference in March 1980. Then, they presented the full paper at the IEEE Industry Applications Society Annual Meeting in October 1980, and had the paper published in the IEEE Transactions on Industry Applications in September 1981. At the same time, Baker applied for a patent on the three-phase NPC inverter circuit in August 1979, and it was registered and published in May 1981. However, he did not include any experimental verification in his patent.

Akagi succeeded in defining and formulating a new pair of instantaneous real and imaginary powers, p and q, for three-phase circuits in November 1981. Three months later, he gave a strict mathematical proof to a clear explanation of the physical meanings of p and q. This definition and formulation made it applicable to any waveform without any restriction because both used only the information of the present voltages and currents. Thus, it was named the "p-q theory" later.

Akagi, Kanazawa, and Nabae presented the world's-first paper on the theory at an international conference in March 1983. The IEEE Transactions paper following the conference paper was published in May 1984, including experimental verification.

The emergence stories of the NPC inverter and the p-q theory would remind us of Newton's famous quote: "Necessity is the mother of invention," and Galilei's famous quote: "Doubt is the father of invention," respectively

Tutorial 13: Grid-Integration and Beyond for Solar Photovoltaic SystemsDate: November 10, 2024 13.00-14.30 PM

Organizers: Professor Yongheng YANG, Zhejiang University in China Dr. Yinxiao ZHU, Zhejiang University in China

Professor Dehong XU, Zhejiang University in China

Biography:

Yongheng YANG (SM'17) earned his B.Eng. degree from Northwestern Polytechnical University, China, in 2009, and his Ph.D. degree from Aalborg University, Denmark, in 2014. He pursued postgraduate studies at Southeast University, China, from 2009 to 2011 and was a Visiting Scholar at Texas A&M University, USA, from March to May 2013. From 2014 to 2020, he was associated with the Department of Energy Technology at Aalborg University, where he achieved the rank of tenured

Associate Professor in 2018. In January 2021, he joined Zhejiang University in China as a ZJU100 Professor. He became a Zhejiang Top-notch Scholar in 2023, awarded to him to tackle the issues for large-scale grid integration of renewable energy. His research focuses on grid-friendly integration of photovoltaic systems and control of power converters, specifically grid-forming technologies. Dr. Yang was Chair of the IEEE Denmark Section in 2019-2020 and is an Associate Editor for IEEE Transactions on Power Electronics and IEEE Transactions on Sustainable Energy. He received the 2018 IET Renewable Power Generation Premium Award. He was the recipient of the 2021 Richard M. Bass Outstanding Young Power Electronics Engineer Award from the IEEE Power Electronics Society (PELS) and the 2022 IEEJ Isao Takahashi Power Electronics Award. In addition, he has received three IEEE Best Paper Awards, and the Excellent Paper Award of CSEE Journal of Power and Energy Systems in 2023. He was included on the Highly Cited Chinese Researchers list by Elsevier in 2022-2024. He is presently a Vice Chair of the IEEE PELS Technical Committee on Sustainable Energy Systems and a Council Member of the China Power Supply Society.

Biography:

Dehong XU (F'13) received the Ph.D. degree from the Department of Electrical Engineering, Zhejiang University, Hangzhou, China, in 1989. He has been a Full Professor with the Zhejiang University, since 1996. He was a Visiting Professor with the Department of Electrical Engineering, University of Tokyo, Tokyo, Japan, from May 1995 to June 1996, the Center of Power Electronics System, Virginia Tech, Blacksburg, VA, USA, from June to December of 2000, the Power Electronics Lab, ETH, Zurich,

Switzerland, from February to April of 2006, respectively. He is interested in power electronics topology, control, and applications to renewable energy and energy efficiency. He has authored 16 books and more than 300 IEEE Journal or Conference papers. He holds more than 50 patents. Dr. Xu was the recipient of seven IEEE Transactions or conference prize paper awards. He was also the recipient of the IEEE PELS R. D. Middlebrook Achievement Award in 2016. He currently serves as a Vice-President Membership of the IEEE Power Electronics Society. He is a CoEditor-in-Chief of the IEEE OPEN JOURNAL OF POWER ELECTRONICS and an Associate Editor of IEEE TRANSACTIONS ON POWER ELECTRONICS. He was the General Chair of IEEE International Symposium on Industrial Electronics (ISIE2012, Hangzhou), IEEE International Power Electronics and Applications Conference (PEAC2018, Shenzhen), etc. He is the Honorable President of the China Power Supply Society.

Biography:

Yinxiao ZHU (M'23) received the M.Sc. (with Distinction) degree in sustainable energy technology, and the Ph.D. degree in electrical and electronic engineering from the University of Liverpool, Liverpool, U.K., in 2019 and 2023, respectively. He is currently a Postdoctoral Research Fellow with the College of Electrical Engineering, Zhejiang University, Hangzhou, China. His current research interests include the grid-integration of photovoltaic systems and control of power electronics, in

particular, grid supportive controls and differential power processing technologies. Dr. Zhu have authored and co-authored over 10 IEEE Transactions paper including IEEE TPEL/TIE/TSTE and also an active reviewer for several flagship IEEE journals/conferences. He is now leading an industrial project on integration and control of solar PV power generation systems for commercial applications

Grid-Integration and Beyond for Solar Photovoltaic Systems

Summary: Recently, power electronics, as an efficient power interface, is benefiting the development of renewable energy resources (RESs). Meanwhile, driven by the continuous decrease in the levelized cost of energy (LCoE), photovoltaic systems (PVSs) are widely integrated into the power grid for carbon neutrality. However, the high penetration level of PVSs raises concerns about grid instability due to intermittent power fluctuations, such as the frequency stability induced by the deficient mechanical inertia in power electronics interfacing RES systems. Accordingly, various attempts have been made to ensure grid-friendliness with a sharp proportion of PV integration to guarantee utility resilience and energy harvesting. Beyond conventional passive integration, recent PVSs are required to act as active power sources, becoming primary sources in the system, particularly, mitigating the adverse effects and simultaneously providing intelligent controllability and flexibility. In this tutorial, we will walk through the current technological challenges for grid-integration of solar PV energy as well as potential solutions. This tutorial provides a comprehensive approach to designing grid-friendly PVSs, covering the details from modelling to advanced controls. The goal is to improve the functionality and manageability of grid-connected PVSs by advanced controls to ensure the sustainability, compatibility with the power grid, efficiency, and reliability of PVSs that adhere to grid regulations and help to reduce the LCoE. The tutorial is organized for intermediate and advanced audiences, engineers, and researchers seeking practical solutions for grid-friendly power electronics for extending integration to resilience enhancement, particularly PV power conversion systems. The prerequisite is basic power electronics and control.

Tutorial 14: Wireless Power Transfer in Offshore and Onshore Applications:Leveraging AI for Enhanced EfficiencyDate: November 10, 2024 13.00-14.30 PM

Date : November 10, 2024 13.00-14.30 PM

Organizer: Dr. Mehdi Bagheri Nazarbayev University, Kazakhstan

Biography:

Dr. Mehdi Bagheri is Senior Member of IEEE and holds an academic background and extensive professional experience in the field of electrical and computer engineering. He obtained his Ph.D. in Electrical Engineering, specializing in energy, power systems and high voltage, from the University of New South Wales (UNSW) in Sydney, Australia. During his academic journey, Dr. Bagheri has collaborated with National University of Singapore (NUS). He also engaged in a close partnership with Rolls-Royce

Pte. Ltd. in Singapore, working on a joint project that demonstrated his practical application of knowledge. Dr.Bagheri is an associate professor at Nazarbayev University currently and received Scopus Award in Engineering Research in 2022. He has successfully led and participated as a Principal Investigator (PI) and co-PI in various projects with a total funding value of 2 million dollars over the past five years. His research interests span a wide range of subjects, including energy security, high voltage engineering, wireless power transfer, diagnosis in power systems for off- and onshore, space and marine applications, electrical rotating machines, power quality, smart grid and city technologies, and smart energy systems.

Wireless Power Transfer in Offshore and Onshore Applications: Leveraging AI for Enhanced Efficiency

Summary: Wireless power transfer (WPT) technology is revolutionizing how electrical energy is delivered, eliminating the need for physical connectors and addressing challenges in both offshore and onshore applications. This tutorial examines the concept and advancements in WPT systems, emphasizing their role in powering underwater vehicles, offshore platforms, electric vehicle (EV) charging stations, industrial automation, and consumer electronics.

The core principles of WPT—inductive coupling, capacitive coupling, and resonant inductive coupling are explored, highlighting the challenges and solutions for efficient energy transfer over varying distances and through different media. Key issues such as power levels, frequency selection, and alignment are discussed to provide a comprehensive understanding of WPT mechanisms.

A focal point of this tutorial is the integration of Artificial Intelligence (AI) to optimize WPT systems. AI algorithms, utilizing machine learning and data analytics, enhance WPT by predicting optimal power transfer paths, and diagnosing potential faults. In offshore applications, AI optimizes device positioning and orientation, ensuring reliable power delivery. For onshore uses, AI enables smart grid integration and predictive maintenance, reducing downtime and extending equipment lifespan.

Emerging trends and future directions in WPT and AI integration are also covered, including the development of AI-powered adaptive control systems for self-optimizing networks. These advancements promise to enhance the scalability and adaptability of WPT solutions across various applications.

The tutorial addresses regulatory and safety considerations, emphasizing compliance with current standards to ensure safe and efficient WPT operation.

Combining AI with WPT systems significantly improves power transfer efficiency. This tutorial provides a detailed overview of the current state, challenges, and future prospects of WPT and AI and offer valuable insights for researchers, engineers and industry professionals. Thie tutorial aims to inspire innovative solutions and drive advancements in efficient, reliable, and sustainable power transfer systems.

Tutorial 15: High Power DC-DC Converters: Developments and ChallengesDate: November 10, 2024 13.00-14.30 PM

Organizer: Professor Khaled H. Ahmed University of Strathclyde, Glasgow, UK

Biography:

Prof Khaled Ahmed received the BSc and MSc degrees from Alexandria University, Egypt in 2002 and 2004, respectively. He received the PhD degree in power electronics applications from the Electronic and Electrical Engineering Department, University of Strathclyde, UK, 2008. In 2011, he was appointed as a Lecturer in Power Electronics at the University of Aberdeen, and was promoted to Senior Lecturer in 2015. Currently, He is a Professor of power electronics at the University of Strathclyde (Power Electronics, Drives and Energy Conversion Group). He has over 20 years

of research experience in power electronics, renewable energy integration, solar energy systems, offshore wind energy conversion systems, smart grids, DC/DC Converters and HVDC. He has won funding of £5.2 million as Primary and Co-Investigator on projects funded by EPSRC, the EU, KTP, the British Council, the Royal Society, the Carnegie Trust, the Scottish Funding Council, the Oil and Gas Technology Centre, and industry (Rolls-Royce, Scottish Power, and Scottish and Southern Energy). Recent funding included Orion Project (first Energy Hub in the UK), £630k, funded by BP, Shell, Equinor, Ithica Energy, SIC, and SSE, 2021-2024 and Horizon EU project, 'Reliable and resilient AC & DC grid design to accelerate the integration of renewables across Europe', £560k with 13 international academic and industrial partners 2022-2026 and Neom Ltd Project 'Grid Code Development' £748k, 2022-2023. He has supervised 25 PhD students; 15 have graduated and the others are ongoing. Prof. Ahmed has published over 180 technical papers in refereed journals and conferences, 1 book, 1 book chapter, and a patent (PCT/GB2017/051364). Total citations of 6404 and h-index of 32. Two of his journal papers are rated in the top 1% of those cited in the academic field of Engineering (Web of Science). He has led the design and delivery of continuing professional development (CPD) courses on HVDC, wind energy conversion systems for technology engineering team in Scottish Power, and Scottish and Southern Energy (SSE), UK. He is a senior member of the Institute of Electrical and Electronics Engineers (IEEE) Industrial Electronics and Power Electronics Societies, IET Fellow, Chartered Engineer, and Senior Fellow of Higher Education Academy (HEA). He serves as a Co Editor-in-Chief of Elsevier Alexandria Engineering Journal, and as an Associate Editor of IEEE Open Journal of the Industrial Electronics Society (OJIES), IET Generation, Transmission & Distribution and IEEE Access..

High Power DC-DC Converters: Developments and Challenges

Summary: DC grid is a promising choice for future DC transmission system. It can be defined as a DC transmission network, which includes more than two terminals with at least one meshed DC line. With DC grids there are multiple power-flow paths between two grid terminals. Power flow between two DC grid terminals may not be affected (or partially affected) by tripping a single DC line. DC grids will require some protection technology in order to isolate faulted lines/units allowing remaining part of the grid to continue power transfer. Normally, any number of new terminals can be added to an existing DC grid. It is expected that DC grids will eventually evolve into large meshed networks, which will inevitably have multiple DC voltage levels. A DC-DC converter will be needed in order to connect two DC grids operating at different DC voltage levels. One evident DC-DC application is to connect DC cables (which have DC voltage up to 600 kV) with overhead DC lines, which may have a higher DC voltage. The existing HVDC (high-voltage direct-current) links have wide range of highly optimized DC voltage levels and their possible integration into the DC grid will require DC-DC converters. It is also expected that medium-voltage DC grids, either distribution or collection systems (like those with offshore wind farms) will rapidly develop following acceptance of DC transmission grids, or their connection to DC transmission will require high-stepping ratio DC-DC converters. This role is similar to a transformer function in traditional AC systems. Nevertheless, even in a DC grid with a single nominal DC voltage there might be a need for DC-DC converters in order to regulate the power flow in some cables or DC voltage level at some nodes. These DC-DC converters may have low stepping ratio and perform a similar function to tapchanging transformers and phase-shifting transformers in AC systems. The power flow in DC grids will be primarily controlled using AC/DC converters located at grid terminals (connecting points with external AC grids).

The main objective of the tutorial is to discuss the high power DC-DC converters with clarifying different topologies advantages and disadvantages. The current, future, and challenges of high power DC-DC converters development will be covered. The talk will discuss DC-DC converter operation, control and interactions with DC/AC systems. The connection between VSC (Voltage Source Converter) and LCC (Line Commutated Converter) DC systems will be analysed via DC-DC converters. The tutorial will cover also the latest modular multilevel converter based DC-DC converter topologies. AC and DC faults analysis for different DC-DC converter technologies will be presented. The talk is supported with simulation on MATLAB/SIMULINK software and practical prototype results.

Tutorial 16: Bidirectional Isolated Dual-Active-Bridge (DAB) Converters: **Fundamentals and Applications** Date

: November 10, 2024 15.00-16.30 PM

Organizer: Professor Hirofumi Akagi Tokyo Institute of Technology, Tokyo, Japan

Biography:

Hirofumi (Hiro) Akagi was born and grew up in Okayama, Japan. He received his Ph. D. degree in electrical engineering from the Tokyo Institute of Technology, Tokyo, Japan, in March 1979. Immediately, he joined the Nagaoka University of Technology as Assistant Professor, and then, Associate Professor. He moved to Okayama University as Professor in August 1991. Since January 2000, he has been Professor, currently Distinguished Professor, at the Tokyo Institute ofmTechnology. His research interests include power conversion systems and their applications

to industry, transportation, and electric power utility. He has authored and coauthored 148 IEEE Transactions/Journal papers, including three invited papers published in Proceedings of the IEEE. His papers and patents have garnered more than 67,000 citations with an h-index of 106, according to Google Scholar.

Dr. Akagi received many awards, including IEEE Fellow and Life Fellow recognitions in 1996 and 2020, respectively, the 2001 IEEE PELS William E. Newel Award, the 2004 IEEE IAS Outstanding Achievement Award, the 2008 IEEE Richard H. Kaufmann Award, the 2012 IEEE PES Nari Hingorani Custom Power Award, 2018 IEEE Medal in Power Engineering, and the 2020 EPE (European Power Electronics and Drives Association) Gaston Maggetto Medal. He is the world's first, and currently sole, recipient of both IEEE and EPE Medals. He served as the President of the IEEE Power Electronics Society from 2007 to 2008 for two years, and as the IEEE Division II Director from 2015 to 2016 for two years.

Bidirectional Isolated Dual-Active-Bridge (DAB) Converters:

Fundamentals and Applications

Summary: This tutorial will begin with a historical review of bidirectional isolated dual-active-bridge (DAB) converters, focusing on circuit and control, with reference to some seminal research papers. The technical term "dual-active-bridge" is derived from the circuit topology, whereas the term "bidirectional isolated" is derived from the functionality. Due to its simpler naming, the DAB converter would be preferable to the bidirectional isolated dc-dc converter. Circuit configurations classify it as either singlephase or three-phase and either resonant or non-resonant. In addition, applications allow it to be divided into the following two groups: One group is that the voltage ratio of the dc input to output terminals is always equal to the turns ratio of the transformer installed to achieve galvanic isolation between the dc input and output terminals. This situation occurs when the DAB converter is integrated into a converter cell of a multilevel converter. The other group is that the voltage ratio is not equal to the transformer's turns ratio with a difference of about 20%. This situation occurs when the DAB converter is connected directly to a battery pack or system. It is known that the former has a higher conversion efficiency than the latter.

Haneda and Akagi designed, built, and tested the 850-Vdc, 100-kW, 16-kHz DAB converter consisting mainly of two 1.2-kV 400-A SiC-MOSFET/SBD quad (4-in-1) modules and a unityturns-ratio transformer using a nanocrystalline soft-magnetic material. The 100-kW DAB converter, which underwent experimental verification, demonstrated the attainment of high levels of efficiency from the dc input to output terminals under three distinct yet meaningful operating conditions. The efficiency levels attained were 99.2% at 100 kW, 99.5% (peak efficiency) at 34 kW, and 99.2% at 10 kW. These results were achieved while maintaining "zero-voltage switching (ZVS)" in all the operating regions. In light of the comprehensive power-loss analysis conducted on the basis of the aforementioned experimental findings, Akagi postulates that the DAB converter will attain an exemplary high level of efficiency, reaching 99.6% or above at the rated power by 2035. This is a consequence of the ongoing advancement in the performance of SiCMOSFET modules and magnetic devices. Such an elevated level of efficiency would permit the elimination of cooling fans, which are regarded as lifespan components, from heat sinks. This tutorial will conclude with an examination of some prospective applications of DAB converters in the near future, including the "solid-state transformer (SST)."

Tutorial 17: High Power Factor IPMSM Drive System Using Electrolytic Capacitorless Inverter

Date : November 10, 2024 15.00-16.30 PM

Organizer: Professor Kiyoshi Ohishi, Nagaoka University of Technology, Niigata, Japan

Biography:

Kiyoshi Ohishi has received the B.E., M.E., and Ph.D. degrees in electrical engineering from Keio University, Yokohama, Japan, in 1981, 1983, and 1986, respectively. His research interests include motion control, mechatronics, robotics and power electronics. Since 1993, he has been with Nagaoka University of Technology, Nagaoka, Japan. He has been a full Professor from 2003 to 2023, a Vice President from 2016 to 2021 and an Executive Director from 2019 to 2021 in Nagaoka University of

Technology. Now, he is a Professor Emeritus and an Academia-Industry Researcher of Nagaoka University of Technology and a Specially Appointed Professor of Nagasaki Institute of Applied Science. He is a Fellow Member of IEEE from 2015, whose contributions are the Development of Fast and Robust Motion Control based on Force Sensing Technology. Now, he is an IEEE Life Fellow member. He received the Outstanding Paper Awards at IECON' 85 and Best Paper Awards at IECON' 02, IECON' 04 from the IEEE IES. Moreover, he is a Fellow Member IEEJ from 2016.

High Power Factor IPMSM Drive System Using Electrolytic Capacitor-less Inverter

Summary: Home appliances such as residential air conditioners are based on the variable speed drives for AC motors such as IPMSM and IM. These variable speed drives always require the simple and low-cost system configurations without the large electrolytic capacitors, reactors, and power devices that consist of PFC converters. This tutorial surveys and analyzes the proposed and advanced control techniques to achieve high input power factor and sinusoidal source current control in electrolytic capacitor-less inverters. The investigated control methods consist of control algorithms based on the energy flow between input and output of the electrolytic capacitor-less inverter, and all of them are useful as high-power factor control methods for compressor drive motors such as air conditioners. Moreover, these techniques realize the variable speed drives for AC motors to meet power supply harmonics regulations (IEC61000-3-2).

Tutorial 18: SiC/GaN power devices and driving technologies brings innovation to high-efficiency energy conversion for RESSs. Date

: November 10, 2024 15.00-16.30 PM

Organizer: Mr. Tetsuo Tateishi and Mr. Ryosuke Ishido, ROHM Co., Ltd. Kyoto, Japan

Biography:

Tetsuo Tateishi is a Member of the Board and Senior Corporate Officer at ROHM Co., Ltd., where he oversees R&D, IT, Legal & IP, and the LSI Business. He joined ROHM in 2014 as a chief technical manager of the LSI Development Headquarters, where he led the development of cutting-edge analog power technologies. In 2019, he was appointed as a Member of the Board and Director of the LSI Development Headquarters. From 2020 to 2024, he served as the Chief Technology Officer (CTO).

He holds both master's and bachelor's degrees in electronic engineering from Kyoto University, earned in 1987 and 1985 respectively.

Biography:

Ryosuke Ishido is a member of System Solutions Engineering Headquarters Organization at ROHM Co., Ltd, where he is assigned to circuit design and application engineering. He received bachelor's degree in electronic engineering from Kyoto Institute of technology in 2013 and master's degree in electronic engineering from Kyoto University in 2015.

SiC/GaN power devices and driving technologies brings innovation to highefficiency energy conversion for RESSs.

Summary: Efforts to achieve carbon neutrality through the use of renewable energy are accelerating around the world. Power generation, energy storage, charging, electrification of mechanical power, and related power systems are being developed and improved, but the silicon semiconductors that have been used for more than 60 years are about to be replaced by new materials (wide-gap semiconductors) in power semiconductors, which are indispensable for promoting power conservation in the power conversion sections of all units. We will introduce silicon carbide (SiC) and gallium nitride (GaN), which are called next-generation power semiconductors, and the drive technologies that drive them. These innovative technologies will bring about technological innovation in the use of renewable energy, greatly accelerating the achievement of carbon neutrality.

Tutorial 19: An Introduction to the Activities of the Eco-Electricity Research Center of the Aichi Institute of Technology. Date

: November 10, 2024 15.00-16.30 PM

Organizer: Professor Kazuto Yukita, Aichi Institute of Technology, Japan

Biography:

Kazuto Yukita received D.E. in electrical engineering from Tokai University in 1997. He was an Associate professor at Aichi Institute of Technology. He has been a Professor of Aichi Institute of Technology since 2012. His research interests in include the power system, power engineering, smart/micro grids and DC power technology and distribution.

An Introduction to the Activities of the Eco-Electricity Research Center of the Aichi Institute of Technology.

Summary: The Aichi Institute of Technology Eco-Electricity Research Center was established in 2005. The center conducts research mainly in the field of electricity related to renewable energy. In this session, we would like to introduce some of the research results.

											UI JUNEIUN 2024, INUVUIIIDUI V - INUVUIIIDUI 10, 2027, INUSAARII, UAPAII							
-	November 09, 2024 (Saturday)	4 (Saturday)		-	Nov	November 10, 2024 (Sunday)	-	Nove	November 11, 2024 (Monday)	4 (Monday)		-	Nov	November 12, 2024 (Tuesdav)		November 1	November 13, 2024 (Wednesday)	sdav)
8:00				0:0			9:00					8:00				8:00		
									Registration	ration								
							T		8:00~	6:00								
00:8				9:00			9:00					00:8	Ke	ynote Speech 3		9:00		
									Opening Clemony 9:00 - 10:00	Clemony 10:00			9:00	Prof. Akatsu 9:00 - 9:50 (50 min)				
													Ko	Kavnota Sneech 4	Sponsor			
10:00		Parallel Tutorials		10:00		Parallel Tutorials	10:00	Key 10:00	Keynote Speech 1 Prof. Kolar 10:00 - 10:50 (50 min)	(u		10:00	9:50	Dr. Hayashiya 9:50 - 10:40 (50 min)	Exhibition 9:00 - 17:00	(25 mir/paper)		Sponsor Exhibition 9:00 - 14:00
11:00		10:00~11:30		11:00		10:00~11:30 (90 min)	11:00	Key TMI	Keynote Speech 2 TMEIC Mr. Tobita		Sponsor Exhibition 10:00 - 18:00	11:00	Ke	Coffee Break 1040 - 11:10 ynote Speech 5		11:00	Coffee Break 11:05 - 11:35	
								0.01					Prof 11:10	Prof. Huang-Jen Chiu 11:10 - 12:00 (50 min)				
12:00				12:00			12:00					12:00		(12:00 Parallel Oral Sessions 11:35 - 12:50	SI	
	Redistration															(25 min/paper)		
13:00	9:00~17:00			13:00	aiotrotion		13:00					13:00				13:00		
		Parallel Tutorials	on min	9:0	Registration 9:00∼18:00	Parallel Tutorials		arallel Oral		Diamond Sponsor		Par	Parallel Oral					
1400		13:00~14:30		14:00		13:00∼ 14:30 (90 min)	14:00 13	Sessions 13:00 - 15:05 P	Poster Session 13:30 - 15:00	Industry Session 13:00 - 15:00 (20 min/company)		14:00 13:0 (25 r	Sessions 13:00 - 15:05 (25 min/baper)	Poster Session 13:30 - 15:00 Industry Session		14:00		
														13:00- 17:00 (10 min/company)				
18-00				16:00			16:00					18-00				18:00		
									Coffee 15:05 -					Coffee Break 15:05 - 15:35			Parallel Oral Sessions	sions
		Tarallel Lutorials 15:00∼16:30 (90 min)				Farailei Lutoriais 15:00∼ 16:30 (90 min)											14:25 - 16:55 /25 min/paper/	
190				16:00			18:00	arallel Oral				16:00 Par	rallel Oral			16:00		
							12	Sessions 15:35 - 17:40			Student		Sessions 15:35 - 17:40					
17:00				17:00			17:00	o minypaper)			Evening Party 16:00 - 18:00	17:00				17:00	Closing Clemony 16:55 - 17:30	
					1													
18:00				18:00			18:00					18:00				18:00		
					Welcon	he Party & Sponsor Exhibition												
1940				10-01		18:00 - 19:30						19-00						
																AW61		
														Banquet				
20:00				20:00			20:00					20:00				20:00		
				+														
21:00				21:00			21:00					21:00				21:00		
										Sponsor E	Sponsor Exhibition (11/10 18:00 - 11/13 14:00)	11/10 18:0	00 - 11/13	14:00)				
Col	Convention Hall 4	II 4	Ope	ning	J Cere	Opening Ceremony, Keynote Spee	eech	ches 1 a	and 2			Con	venti	Convention Hall 1-3	Banquet	luet		
Roc	Room 105		Indu	lstri	al Ses	Industrial Sessions						Roo	Room 102	2	Keynote Closing (Keynote Speeches Closing Ceremony	es 3, 4, Y	, and 5,
Eve	Event-Exhibition Hall	on Hall	Spo	nso.	r Exhi Coffee	Sponsor Exhibition, Poster Session Lunch. Coffee Break		, Stude	ent Ev	s, Student Evening Party,	arty,							
			5								1							

ICRERA2024_Program at a Glance

CONFERENCE PROGRAM

			Date: November, 09 2024		
9:00–17:00			REGISTRATION		
	TUTORIALS		TUTORIALS		TUTORIALS
Room	105	Room	109		
10:00-11:30	TUTORIAL-1 Prof. Yen-Shin Lai, National Taiwan University of Science and Technology, Taiwan "High efficiency switching control for power converters and motor drives"	10:00-11:30	TUTORIAL-2: Professor Rosario MICHELI, Palermo University, Italy "Onboard Energy Storage Systems for Rail Vehicles: Challenges and Perspectives"		
12:00-13:00					
			TUTORIALS		
Room	105	Room	109	Room	110
13:00-14:30	TUTORIAL-3 Prof. Hiroo Sekiya Chiba University, Chiba, Japan Prof. Xiugin WEI Chiba Institute of Technology, Chiba, Japan "Design of Magnetic Resonance Wireless Power Transfer with Load-Independent Technology"	13:00-14:30	TUTORIAL-4: Prof. Dr. Ing. Youcef SOUFI University Echahid Larbi Tebessi, Algeria "Smart Grids for green and sustainable energy transition"	13:00-14:30	TUTORIAL-5 Dr. Jason Nye UPCX-Platforms. Seattle, United States Energizing Change "Unlocking Blockchain's Role in Socially Implementing the Future of Energy"
14:30-15:00					
Room	105	Room	109		
	TUTORIAL-6 Prof. Dr. Nihal Kularatna School of Engineering Teaching and Research University of Waikato, New Zealand "Supercapacitor Assisted Power Converters and Protection Systems for DC Homes and DC Appliances Based on Renewable Energy"	15:00-16:30	TUTORIAL-7 Dr Nurkhat Zhakiyev, Astana IT University, Kazakhstan "Modeling of Reneables and Storages in PyPSA and Julia tools: case study for electricity system of Kazakhstan"		

			Date: Noven	ber, 10 20)24			
9:00–18:00			RE	GISTRATI	ON			
	TUTORIALS		TUTORIALS		TUTORIALS		TUTORIALS	
Room	105	Room	109	Room	110	Room	111	
10:00-11:30	TUTORIAL-8 Dr. Shinzo Tamai Toshiba Mitsubishi- Electric Industrial Corporation (TMEIC), Power Electronics Systems Division, Japan "PWM Control of Three-Level Neutral Point Clamped Converters for High Power Applications"	10:00-11:30	TUTORIAL-9 Prof. Seref Sagiroglu, Gazi University, Ankara, Turkiye "AI, Big Data Analytics, Security and Privacy Issues in Smart Energy Systems"	10:00-11:30	TUTORIAL-10 Professor V. Fernao Pires Polytechnic Institute of Setubal, Portugal "DC Microgrids: Benefits, Architectures, Perspectives and Challenges"	10:00-11:30	TUTORIAL-11 Professor I. Ewean Davidson, Cape Peninsula Univ of Technology, South Africa Dr Elubraji Buraimoh Clemson University, USA "A Comprehensive Microgrid Test Model Based on IEEE Distribution Test System for Smart Grid Transition Analysis"	
12:00-13:00								
	TUTOR	IALS			TUTOF	NALS		
Room	105	Room	109	Room	110	Room	111	
13:00-14:30	TUTORIAL-12 Prof. Hirofumi Akagi Tokyo Institute of Technology, Japan "The Neutral-Point-Clamped Inverter and Instantaneous-Power Theory: How They Emerged in the Early 1980's"	13:00-14:30	TUTORIAL-13 Prof. Yongheng YANG, Zhejiang University in China Dr. Yinxiao ZHU, Zhejiang University in China Prof. Dehong XU, Zhejiang University in China "Grid-Integration and Beyond for Solar Photovoltaic Systems"	13:00-14:30	TUTORIAL-14 Dr. Mehdi Bagheri Nazarbayev University, Kazakhstan "Wireless Power Transfer in Offshore and Onshore Applications: Leveraging AI for Enhanced Efficiency"	13:00-14:30	TUTORIAL-15: Prof Khaled H. Ahmed University of Strathchyde, Glasgow, UK "High Power DC-DC Converters: Developments and Challenges"	
14:30-15:00								
	TUTOR	IALS			TUTOF	IALS		
Room	105	Room	109	Room	110	Room	111	
15:00-16:30	TUTORIAL-16: Prof. Hirofumi Akagi Tokyo Institute of Technology, Japan "Bidirectional Isolated Dual-Active-Bridge (DAB) Converters: Fundamentals and Applications"	15:00-16:30	TUTORIAL-17 Prof. Kiyoshi Ohishi, Nagaoka University of Technology, Niigata, Japan "High Power Factor IPMSM Drive System Using Electrolytic Capacitor-less Inverter"	15:00-16:30	TUTORIAL-18 Mr. Tetsuo Tateishi, ROHM Co., Ltd., Kyoto, Japan Mr. Ryosuke Ishido, ROHM Co., Ltd., Kyoto, Japan "SIC/GaM power devices and driving technologies brings innovation to high- efficiency energy conversion for RESSs."	15:00-16:30	TUTORIAL-19 Prof. Kazuto Yukita, Aichi Institute of Technology, Japan "An Introduction to the Activities of the Eco- Electricity Research Center of the Aichi Institute of Technology"	
	Date: Novemb	er, 10 2024			Date: Novemb	oer, 10 2024		
18:00-19:30			Welcome F	arty & Sponso	or Exhibition			

	Date: November 11, 2024
8:00-9:00	REGISTRATION
09:00-10:00	Opening Ceremony and Speeches at Convention Hall 4: - Honorary Chair Mr. Yoshinobu Higasi - Honorary Chair Mr. Hidehiko Kikuchi - General Chair Prof. Fujio Kurokawa - Nagasaki Governor Mr. Kengo Oishi - Nagasaki Mayor Mr. Shiro Suzuki - Chairperson of Kyushu Electric Power Co.,INC. Mr. Michiaki Uriu - General Co-Chair Prof. Ilhami Colak Chairs: Professor Nobumasa Matsui, Professor Yuichiro Shibata
	KEYNOTE at Convention Hall 4
10:00-10:50	Speaker: Professor Dr. Johann Walter Kolar Next-Generation SiC/GaN Variable Speed Drive Systems — "How to Handle a Double-Edged Sword"
	Chairs: Professor Fujio Kurokawa, Professor Rosario Miceli
	KEYNOTE at Convention Hall 4
10:50-11:40	Speaker: Mr. Masayuki Tobita Power Electronics Contribution to Achieving Carbon-Neutral Society Chairs: Professor Dr. Kan Akatsu, Dr. Khaled Ahmed
11:40-13:00	LUNCH

		D)ate: November	11, 2024			
		710110					
Hydrogen Gener	ORAL PRESENT# earch on Hydrogen Energies -From ation to Its Use- izu Hoshi, Idit Avrahami	OS 2: Emerging Tech Electronics Reliability and EMI, Heat, and Lo CHAIRS: Hidemine Of	: Online Monitoring oss Reductions	OS 3: Energy Enginee Energy, Electronics, a -Power Converters fo CHAIRS: Hiroo Sekiya	ering in Renewable and Communications r Grid Network-	OS 4: Decarbonization Railway Field CHAIRS: Kota Minam Wang	
Room	101A	Room	101B	Room	101C	Room	102
13:00-13:25	ID:415 A Novel Micro-reactor For Hydrogen Production From Solid Nabh4 Hydrolysis Idit Avrahami (Ariel University), Allex Schechter (Ariel University)	ID:337 Design and Er Control Scheme for 1 Cascaded Converter with Greatly Reduce Yu-Chen Su (National University)*; Po-Tai (Tsing Hua University)	the Hybrid based STATCOM od Switching Losses I Tsing Hua Cheng (National	ID:354 Numerical Ar in a Power Grid with Forming Inverters Kouki Matsumoto (K Yoshihiko Susuki (Kyo	Multiple Grid- yoto University)*;	ID:73 Load Identifica Urban Rail DC Tracti System Yan Li (Beijing jiaoto Zhongping Yang (Bei university); Fei Lin (B university); Hu Sun (I university)	on Power Supply ng university)*; iing jiaotong eijing jiaotong
13:25-13:50	ID:400 Current Situation and Issues of Hydrogen Generation System Fueled by Sodium Borohydride Moeko Kaku (Tokyo University of Science)*; Nobukazu Hoshi (Tokyo University of Science)	ID:374 Conducted er reduction for multi- type ACC Okura Atsutoshi (Nag Technology)*; Hiroki (Nagaoka University Yuku Nakata (Nagaol Technology); Jun-ichi University of Tec.)	cell SST with current gaoka University of Watanabe of Technology); ka University of	ID:358 Cell balance of on-board chargers w configurations for Pl converters Susumu Ohba (Shind co., Itd)*	vith multi-level FC and LLC	ID:419 Renewable N Technology for Elect Transportation: A Re Yuyang Wan (Aalbor, Wang (Aalborg Unive Han (Southwest Jiaol Xiaoqiong He (South' University); Zhe Che university)	rrified eview g University); Yanbo ersity)*; Pengcheng cong University); west Jiaotong
13:50-14:15	ID:397 Experimental Verification of Model Reference Adaptive Control for Hydrogen Engine Generator System Fueled by Sodium Borohydride Tomoki Ono (Tokyo University of Science)*; Nobukazu Hoshi (Tokyo University of Science)	ID:412 Diode-Clamp using Only n-chann Separated Gate Driv Tomoya Sasanuma (L University)*; Shuto Y University); Hirohito University)	el MOSFETs Applied ers Utsunomiya agawa (Utsunomiya	ID:373 New Power S for Bi-directional Co Hybrid Microgrid Rutvika Manohar (M	nverter in AC/DC	ID:363 Consideratio Utilization By Using Makoto Chida (West Company), Haruna H Japan Railway Comp	Railway Assets Japan Railway iramatsu (West
14:15-14:40	ID:164 Automated Determination of Equivalent Circuit Models for Electrochemical Systems Using EIS and Machine Learning Motoya Furugori (Tokyo University of Science)*; Noboru Katayama (Tokyo University of Science)	ID:369 Experimental Bridge Modular Casc Amplifier Comprisin 95.0% Efficiency Shunsuke ishida (Yok University); Hidemin National University)*	caded Linear g Six Cells with ohama National e Obara (Yokohama	ID:360 Maximum Po Piezoelectric Elemer Power Generation S Hiroaki Yamada (Yan Naotaka Nakahigash University)	nt in Vibration ystem naguchi University)*;	ID:385 Developmen efficient Railway Uti Energy Storage Syst Sustainable Society Hiroyasu Kobayashi (Yusuke ichinose (Chil Daisuke Miyagi (Chib	lizing Wayside em towards Future Chiba University)*; pa University);
14:40-15:05	ID:352 Development of light-duty commercial vehicle powered by fuel cell (FCEV) in Tokyo R&D Nobuhiko Okawa (TokyoR&D)*	ID:382 Accurate ESR Link Capacitor with S Voltage by a Leafony Yusaku Ogawa (Kyusl Technology)*; Takum institute of Technolo Hasegawa (Kyushu in Technology)	Switching Ripple Y hu institute of na Yamasoto (Kyushu gy); Kazunori	ID:449 Variable Off- Mixed Conduction N Converter Jizhe Wang (Fukuoka Suetsugu (Fukuoka U Kurokawa (Nagasaki Science)	Aode Boost PFC I University), Tadashi Iniversity), Fujio	ID:447 Recent Energ Technologies For Ra Systems Soya Kawasaki (Wase	ilway Traction
15:05-15:35			COFF	EE BREAK			

Date: November 11, 2024

	ORAL PRESENTAT	IONS			ORAL PRES	SENTATIONS	
		SESSION 1 CHAIRS: Keiji Wada,	Takanori Isobe	SESSION 2 CHAIRS: Masanari Kir	mura, Takeo Hyodo	SESSION 3 CHAIRS: Zhanying He Nasution	ou, Ghiffari A. M.
Room	103	Room	104	Room	107	Room	108
13:00-13:25	ID:377 Estimation of the Technical Resource for Tidal Stream Energy in South-West Japan Patxi Garcia Novo (Nagasaki University)*; Simon Waldman (Heriot-Watt University); Yusaku Kyozuka (Nagasaki University); Daisaku Sakaguchi (Nagasaki University)	Circuits and Pa Impedance Charact Fo Ryoma iki (Tokyo Un	Tokyo University of	ID:165 An Investigat Control by Grid Side based Wind Turbine Masaya Inoue (Sophi Sakamoto (Sophia Ur	Converter of PMSG- Generator a University)*, Orie	ID:266 Optimal Ope Convenience Store v and Cooling Model I Shinya Yamamoto (L Ryukyus)*; Akie Ueh the Ryukyus); Hirosh Electric Co., Ltd.); Ed Collins (Clemson Uni Srinivasarangan Ran University); Tomono of the Ryukyus)	with Electric Vehicle Heat Pump Iniversity of the ara (University of i Takahashi (Fuji ward Randolph versity); Shriram
13:25-13:50	ID:379 Development of Bidirectional DC/DC Converter for Energy Storage with Mixed Power Generations Shin-ichi Hamasaki (Nagasaki University)*; Tetsuji Daido (Nagasaki University); Kazuaki Miyamoto (Nagasaki University)	Metric Learning fo Clustering: Tow Optimization Photovolta Nanae Kaneko (Was Fujimoto (Wased Takahashi (Waseda	iversity); Yutaka iino); Yasuhiro Hayashi	ID:173 Forward Actin Down Converter Chien-Ming Chen (Na University); Jen-Hung of Electrical Engineer Kung University)*; Cl (National Cheng Kun, Fuh Chen (National C University)	ational Cheng Kung g Wang (Department ring National Cheng ne-Wei Hsu g University); Jiann-	ID:271 Fast and Stat using Deadbeat PI C Compensator Motomichi itoyama Kenji Natori (Ehiba U Sato (Chiba Universit	ontrol with Smith (Chiba University)*; iniversity); Yukihiko
13:50-14:15	ID:386 Optimized Design Search of Tidal Turbine with Low Cut-in Speed for Energy Harvesting Smart Buoys Ngome Adam Mwero (Nagasaki University)*; Reiko Yamada (Nagasaki University); Patxi Garcia Novo (Nagasaki University); Yusaku Kyozuka (Nagasaki University); Daisaku Sakaguchi (Nagasaki University)	Existing Grid Syste Battery Set for Rai JITESH KUMAR SA	SAFUMI MIYATAKE	ID:174 Enhanced Vir Generation Forecast Fuzzy Decision Supp Bidirectional Long SI Models Reza Nadimi (Institut Tokyo)*; Mika Goto (Tokyo)	ing in Japan Using ort and nort-Term Memory re of Science	ID:249 MPC-based C of Smart City Consid Storage Takuma ishibashi (Ur Ryukyus)*; Akie Ueh the Ryukyus); Naraya (SASTRA Deemed Un Hemeida (Aswan Un Takahashi (Fuji. elect Tomonobu Senjyu (U Ryukyus)	ering Multi Energy niversity of the ara (University of anan Krishna iversity); Ashraf M. iversity); Hiroshi ric Co., Ltd.);
14:15-14:40	ID:395 A smart buoy-integrated antenna for monitoring tidal power turbines Takafumi Fujimoto (Nagasaki University)*; Chai-Eu Guan (Nagasaki University); Kaisei inoue (Nagasaki University); Yoko Yaemura (University of Nagasaki)	Vehicle-grid Integra Challenges, Opport Direc ZHANG CHENGQUAI Technology), HIROS Corporation), MI	tions N (Tokyo Institute of	ID:176 Wide-Range Environment Testing Converters and Thei between +40°C and Turmandakh Bat-Org Metropolitan Univer (Tokyo Metropolitan Wada (Tokyo Metrop	g for Power r Components -40°C ;il (Tokyo sity)*; Ryosuke Ota University); Keiji	ID:273 A Dynamic V Simulator for Power Power Converter Cir Koichi Domoto (Toky University)*; Keiji W Metropolitan Univer Hayashi (Chiba instit	Device Behavior in cuits o Metropolitan ada (Tokyo sity); Shin-ichiro
14:40-15:05	ID:394 Energy and Labor Saving In A Smart Fishery At Coast Kazuhiko MATSUOKA (Nagasaki Institute of Applied Science)	Charging Static Distribution By Fuku	ne Electric Vehicle ons and Spatial Charger Type In Joka rushu University)	ID:178 Nonlinear Los Compensation for D Resonant Converter Bang Charge Control Guan-Ling Chen (Nat University)*; Yuan-Cl Taiwan University); c (National Taiwan Un	ual-Output LLC based on Bang- l ional Taiwan nih Lin (National ihing-jan chen	ID:279 A Hybrid Qua Machine Learning A Wind Farm Power F Batuhan Hangun (Yil University)*; Emine J Technical University) (Yildiz Technical Univ (Yildiz Technical Univ Cyildiz Technical University)	pproach to Offshore precasting diz Technical Akpinar (Yildiz ; Murat Oduncuoglu versity); Oguz Altun versity); Onder
15:05-15:35			COFF	EE BREAK			

Date: November 11, 2024

		ORAL PRESENTAT	IONS		
SESSION 4 CHAIRS: Hiroshi	Takami, Yoshiki Matsunaga	SESSION 5 CHAIRS: Maik Plenz, /	Andreas Stadler	SESSION 6 CHAIRS: Soichiro Uer	da, Rami A AL-HAJJ
Room	109	Room	110	Room	111
13:00-13:25	ID:80 Harmonics Analysis and Evaluation for Active LC-LPF attached PMSM Drive by IRM-ILQ Control through Experiments Kazuki Abe (Shibaura institute of Technology)*; Yoshiki Sasaki (Shibaura institute of Technology); Hiroshi Takami (Shibaura institute of Technology); Fuminori ishibashi (Shibaura institute of Technology); Koji Shibasaki (Maruwa Electronic inc.); Takumi Ebara (Maruwa Electronic inc.)	ID:92 Secure Identiti Energy Sources thro Identity and Attribut Control Moritz Volkmann (Ha Applied Sciences)*	ugh Self-Sovereign te-Based Access	ID:113 Optimization System of a Clinic In Generator and Elect Tomoya inagata (Naj Applied Science)*; Yu Electro-Communicat Jiyoung Choi (Nagass Applied Science); Koi (Nagasaki institute o Fujio Kurokawa (Nag Applied Science); No (Nagasaki institute o	tegrating Diesel ric Vehicles gasaki institute of uji Mizuno (Osaka ion University); uki institute of uki kawaoka f Applied Science); asaki institute of bumasa Matsui
13:25-13:50	ID:81 Control of a Simple High- Frequency Isolated Single-Phase AC-DC Converter Shintaro Hamada (Nagoya institute of Technology)*; Kohei Budo (Gifu University); Wataru Kitagawa (Nagoya institute of Technology); Takaharu Takeshita (Nagoya institute of Technology)	ID:100 Simplified Eq Model for Battery Er System Used for Grie Response Sandro Sitompul (Hit Masachika Nakatani Tomoyuki Hatakeyan	ergy Storage d Frequency achi, Ltd.)*; (Hitachi, Ltd.);	ID:115 Stability Ana Control Systems for Wind Power Genera SRG and Capacitor-le Converters HAOZHENG JiA (Fuku Technology)*; Ohyar (Fukuoka institute of	Variable Speed tion Systems Using ess AC-AC loka institute of na Kazuhiro
13:50-14:15	ID:82 Development of an Efficient Charging Control System for Pico- Hydro Power Generation Utilizing Multiple Impact Water Wheel (MIWW) with MPPT Control Yusuke Asami (Shibaura institute of Technology)*; Hiroshi Takami (Shibaura institute of Technology); Fuminori ishibashi (Shibaura institute of Technology); Shota Kawate (Koa Electronics Co., Ltd.); Hidemi Kurita (institute of Natural Harmony Technology); Masaki Shimizu (Souken Group)	ID:106 A Low-Carbon Operation Planning , Electric Buses Haruka Nakano (Was Fujimoto (Waseda Uni Kaneko (Waseda Univer Sugano (Waseda Univer (Waseda University); (Waseda University)	Approach for eda University)*; Yu niversity); Nanae versity); Soma versity); Wei-Hsiang rsity); Yuto ihara	ID:120 A Proposal o Control Based on IR SPMSM Drive with A Ryoki Mikami (Shiba technology)*; Kazuki institute of Technolo (Shibaura institute o Fuminori ishibashi (S Technology)	M-ILQ Control for Active LC Filter ura institute of Abe (Shibaura gy); Hiroshi Takami f Technology);
	ID:68 Solar Energy Forecasting Using Ensemble Learning Method BetUI ERSOZ (Gazi University)*; Muhammed Cafer TaSdelen (Gazi Univesity); Sueda Eren (Gazi University); Seref SAGiROGLU (Gazi University); Ali Oter (KSU Elektronik ve Otomasyon BOlUmU)	ID:107 Multi-Objecti Optimization of Cost Energy Utilization, a Using a Genetic Algo Madhu Brahmankar University)*; Cheng-i Central University)	, Renewable nd Load Balance rithm National Central	ID:134 Control Strat Second Harmonic Cu Enhancing Transient Bidirectional V2X Sy Zhongwei Guo (Shint Co., Ltd.)*; Takayuki (Shindengen Electric Takashi Kinoshita (Sh Kumamoto Technore	rrrent and Response in stems Jengen Electric Mfg. Kobayashi Mfg. Co., Ltd.); iindengen
14:40-15:05	ID:85 A Proposal of Optimal Current Control for Three-Phase Grid-Connected Inverter with LCL- Filter via IRM-ILQ Method Ryo Takahashi (Shibaura institute of Technology)*; Kazuki Abe (Shibaura institute of Technology); Hiroshi Takami (Shibaura institute	ID:112 A Personalize Learning Scheme for Parameter Determin Inverters Yu Fujimoto (Waseda	Operational ation of PV Smart	ID:304 Energy Mana for Hybrid Electric V Cem Demiroglu (Ase KAYISLi (Gazi Univers	ehicles san inc.); Korhan
	of Technology); Fuminori ishibashi (Shibaura institute of Technology)				

		C	ate: November	11, 2024			
	ORAL PRESENTA	TIONS			ORAL PRES	ENTATIONS	
Control for High- Transformers (SS	Technologies of Circuit, Device, and Performance Solid State STs) ada, Takanori Isobe	OS 7: Green Chemistr Neutralization CHAIRS: Masanari Kir	-	SESSION 7 CHAIRS: Hiroo Sekiya	ı, Yu Yonezawa	SESSION 8 CHAIRS: Kota Minami Wang	nosono, Yanbo
Room	101A	Room	101B	Room	101C	Room	102
15:35-16:00	ID:416 Solid-State Transformers Connected to 6.6-kV Distribution System in Japan Keiji Wada (Tokyo Metropolitan University)*; Ryosuke Ota (Tokyo Metropolitan University); Yuto Saito (Tokyo Metropolitan University)	ID:332 Highly Sensit Sensing Characterist Gas Sensors at Eleva Takeo Hyodo (Nagas: Takahiro Kurano (Na; Misaki Hamano (Taiy Corporation); Yasuhi University); Taro Uec University)	ics of Diode-Type ted Temperatures aki University)*; gasaki University); ro Nippon Sanso ro Shimizu (Nagasaki	ID:232 Comparative Control Algorithms f Charging Power Sup Furkan Demirbas (Ga Korhan KAYiSLi (Gazi Nurkhat K Zhakiyev (,	or The Capacitor plies zi University); University)*;	ID:138 Impact Analy Environment on Cap Transfer Systems: Eq Parameters and Perf Adilkhan Kapanov (N University)*; Seyed S (Nazarbayev Universi (Nazarbayev Universi (Nazarbayev Universi (Electrical and Compu Department, Nazarba	acitive Power µuivalent Circuit formance Analysis azarbayev aeid Heidari Yazdi ty); Sadjad Shafiei ty); Askat Kural ty); Mehdi Bagheri uter Engineering
16:00-16:25	ID:384 Design and Material Choice of High Frequency Transformers for Solid State Transformer Kan Akatsu (Yokohama National University)*	ID:350 Advancemen Hydrogen Recycling Nagasaki University Masanari Kimura (Na	Systems at	ID:69 Roles of PV+St Community Centers Level of Distribution After Extreme Weatl Zhihua Qu (Universit Bo Tu (University of (in Achieving A Network Resilience her Conditions y of Central Florida);	ID:194 Impacts of th of Economic Load Di on the Performance Generation Control Reo Yamaguchi (Aich Technology)*	spatching Control of Automatic
16:25-16:50	ID:417 Design Consideration of Mmc-based Ac-dc Converter With 3.3 Kv Sic-mosfets For Ssts Hidemine Obara (Yokohama National University), Yuki Okamura (Yokohama National University)	Yasuhiro Arikawa (Na Kenichiro Omoto (Na	tion Metal agasaki University)*; gasaki University); University); keisuke University); Motoki	ID:74 Experimental Ha for Induction Motor D Low-Pass-Filter via IRN Yoshiki Sasaki (Shibaur Technology)*; Kazuki A of Technology); Okado institute of Technology (Shibaura institute of T ishibashi (Shibaura inst Masashi Nakamura (Tc Electric industrial Syste Toshiaki Oka (Toshiba l industrial Systems Corp	rive with Active LC M-ILQ Control a institute of sbe (Shibaura institute Hiromu (Shibaura I); Hiroshi Takami echnology); Fuminori titute of Technology); sshiba Mitsubishi- ms Corporation); Mitsubishi-Electric	ID:196 Optimizing So Collector Performan Thermal Mass in Ario Conditions KASHIF IRSHAD (Cent Excellence in Renewa RE) King Fahd Univer and Minerals)*; Moh (Aligarh Muslim Univ Rehman (King Fahd L Petroleum and Miner institute)	ce with Pebbles as d Climate er of Research hble Energy (CoRE- sity of Petroleum ammad Uzair ersity); Shafiqur Jniversity of
16:50-17:15	ID:443 Design and Control Strategy of Dab Converter With 3.3 Kv Sic-mosfets For Ssts Takanori Isobe (University of Tsukuba), Cheng Huang (University of Tsukuba), Tomoyuki MANNEN (University of TSUKUBA)	ID:387 Designing of a Pressure-temperat Adsorption Process Koki Urita (Nagasaki	ure Swing	ID:142 Household er under incentive-base DR considering elect Ryo Tanimoto (NTT E Masaki Nakamura (N	ed and price-based cricity charges DOCOMO, iNC.)*;	ID:198 Prevention O Triggering of Two Pa by Optimization Para and Common-Source Ryoma Yoshida (Okay Eiji Hiraki (Okayama L Umetani (Okayama L Masataka ishihara (O	ralleled GaN-HEMTs asitic Capacitance e Inductance yama University)*; University); Kazuhiro Jniversity);
17:15-17:40	ID:444 Fault-Ride-Through Operation of Solid-state- Transformer Equipped with Ultra Small Capacitors in H-Bridge Cells Tomoyuki MANNEN (University of TSUKUBA)*	ID:409 Fault-Toleran Twisting Control for Disturbances Ferhat Bodur (Gazi U KAPLAN (Gazi Univer	Quadrotors with niversty); Orhan	ID:67 Performance A Optimization of Vap Refrigeration Cycle Jidong Li (Beihang Ur Cai (Beihang universi (Beihang university); University)	or Injection niversity)*; Maolin ty); Weiqing Xu	ID:159 A Study on th Calculation Model fo Residential Storage I Alleviate Grid Conge Satoshi izumiya (KYO Takashi Furukawa (KY Corporation); Kenta C Corporation)	or Utilizing Batteries to stion CERA Corporation)*; YOCERA

		Date: Nove	ember	11, 2024			
	ORAL PRESENTA	TIONS			ORAL PRES	ENTATIONS	
		OS 8: Robots & Mobility with Susta Energy Systems CHAIRS: Takahiro Suzuki, Masano		SESSION 9 CHAIRS: Nobukazu H	oshi, Idit Avrahami	SESSION 10 CHAIRS: Motomichi I Bulbul	toyama, Halil Ibrahim
Room	103	Room 104		Room	107	Room	108
15:35-16:00		422: Development of an Al-based di system for cherry tomato skin splitt cracking Masanori Sato (Nagasaki Institute of Science)*; Zhaohui Tan (Nagasaki Ins of Applied Science); Takahiro Naruse (Nagasaki Institute of Applied Scienc Masaharu Tanaka (Nagasaki Institut Applied Sciece); Ryuki Ogawauchi (Ni Agriculture and Forestry Technical Development Center); Riho Tasaki (N Agriculture and Forestry Technical Development Center)	Applied stitute e); e of agasaki	ID:182 Efficiency and Partial Shading Dete Parallel Configuratio Generation Systems Han-Cheng Wu (Nati University); Chun-We Sun Yat-sen Universi (National Sun Yat-ser	ction in Series- n of Photovoltaic onal Sun Yat-sen ei Cheng (National ty); Jen-Hao Teng	ID:93 Evaluation of I Application in Bidire with Single-Cell Aux Converter Ghiffari A. M. Nasuti Science Tokyo)*; Ma (institute of Science	ectional Chopper iliary Full-Bridge on (institute of koto Hagiwara
16:00-16:25		ID:425 Applications of Image Recognition Using Deep Learning Its Challenges Kosei Yamasaki (Nagasaki Institut Applied Sciece), Masaharu Tanaka (Nagasaki Institute of Applied Scie	e of	ID:189 Performance Strategies for Totem Light Load DCM Ope yu chen liu (National Technology, Taipei T HSU (National Taipei Technology, Taipei To	Pole PFC Under ration Taipei University of ech)*; TZU CHIEH University of	ID:333 Design and C Switch Forward Con Supertwisting Slidin Korhan KAYISLi (Gazi Zafer Caglayan (TED COteli (Firat Universi Roscia (Universita di Abdelkader (Departr and Renewable Ener (LEESi), University of Abdelhakim Belkaid	verter with g Mode University)*; Ruhi University); Resul ty); Mariacristina Bergamo); Harrouz nent of Hydrocarbon gy, Laboratory Adrar, Algeria);
16:25-16:50		448: Sustainable EV system for n generation reginal society Takahiro Suzuki (Reitaku Universit		ID:125 Benchmarkin new technologies in chain and related bu Mariapia Martino (D di Torino)*; Massimo (Politecnico di Torino Global Solutions inte	hydrogen value usiness models energ - Politecnico o Santarelli o); Evren Unsal (Shell	ID:411 A Brief Overy Mobility and Energy Strategies with Vehi (V2X) Concept on Sr ilhami Colak (istinye irmak (Gazi Universit Fatimanur Tepe (Gaz	Management cle-to-Everything nart Grid University); Erdal y)*; izviye
16:50-17:15		ID:426 Challenge To Build Sustain Goto Islands Ichiro Masaki (Masaki Shoten Ltd.		ID:315 SOC-Based M Hybrid Battery Syste Motorcycles Momoe Sakai (Nagoy Technology)*; Takah (Nagoya institute of	e ms for Electric ya institute of aru Takeshita	ID:265 Magnet Tem of PMSM with Wirel Ryo Hamba (Nagaok Technology)*; Keisok University of Techno (Toyo Denki Seizo K.I	ess Power Transfer a University of te Kusaka (Nagaoka logy); Yoshihisa Hojo
17:15-17:40				ID:163 Prediction fro Drawing using AR te Twin Kaoru Mitsuhashi (Te	chnology for Digital	ID:27 Research on S Power Prediction B ICEEMDAN-FullLinea Combined Model Zhanying Hou (Beihan Weiqing Xu (Beihang Guanwei Jia (Henan Cai (Beihang univers)	ased on an or-TSMixer-CNN ng university); ; university)*; University); Maolin

	C	Date: November 11, 2024	
		ORAL PRESENTATIONS	
SESSION 11 CHAIRS: Kazuki	Abe, Yusuke Asami	SESSION 12 CHAIRS: Moritz Volkmann, Madhu Brahmankar	SESSION 13 CHAIRS: Tomoya Inagata, Zhongwei Guo
Room	109	Room 110	Room 111
15:35-16:00	ID:214 SOLARUX WIRELESS MESH NETWORKS and APPLICATION for MONITORING PHOTOVOLTAIC SYSTEMS OzgU INCESU (Dokuz Eylul University)*; Evren M Toygar (Dokuz Eyll University); Tufan Bayram (Solarux Alternative Energy Systems)	ID:221 Mitigating Grid Peaks in E- Mobility Charging Maik Plenz (Helmut-Schmidt University)*; Andreas Stadler (Helmut Schmidt University); Detlef Schulz (Helmut Schmidt University)	ID:241 Energy Management of Aquaculture Considering Load Unit Commitment Under Different Contract Power Soichiro Ueda (University of the Ryukyus)*; Jane Wambui Chege (University of the Ryukyus); Takuma ishibashi (University of the Ryukyus); Shinya Yamamoto (University of the Ryukyus); Akie Uehara (University of the Ryukyus); Tomonobu Senjyu (University of the Ryukyus)
16:00-16:25	ID:217 Improvement of Power Efficiency of Stirling Engine Power Supply Vehicle Based on Temperature Control Yan Zhao (Shibaura institute of Technology)*; Jingfan Zhang (Shibaura institute of Technology); Masashi Monoro (Shibaura institute of Technology); Hiroshi Takami (Shibaura institute of Technology)	ID:408 Eco-Friendly Energy Storage Systems based Demand Side Management for Rural Microgrid by Dandelion Optimization Algorithm izviye Fatimanur Tepe (Gazi University); Mehmet Demirtas ("Faculty of Technology, Gazi University"); Erdal irmak (Gazi University)*; Ramazan Bayindir (Gazi University)	ID:246 A Wind Speed Interval Prediction Framework based on Machine Learning Models and Kernel Density Estimation Method Rami A AL-HAJJ (American University of the Middle East)*; Gholamreza OsKrochi (American University of the Middle East); ALI ASSi (SMIEEE – Renewable Energy); Mohamad Fouad (Mansoura University); ilhami Colak (istinye University)
16:25-16:50	ID:218 Digitally Controlled Peak Current Mode DC-DC Converter for Plasma Thruster in Satellite System Yoshiki Matsunaga (Japan Aerospace Exploration Agency)*; Kazuhiro Kajiwara (Nagasaki institute of Applied Science); Fujio Kurokawa (Nagasaki institute of Applied Science)	ID:311 The Impact of LCL Filter on the Crest Factor in Hybrid Power Systems Emre Tunç (Bolu Abant Izzet Baysal University), Murat Fidan (Bolu Abant Izzet Baysal University), Erdal Bekiroglu (Gazi University), Halil İbrahim Bülbül (Gazi University)	ID:247 Analysis on Subsynchronous Oscillation of a Multi-Loop Grid Forming Converter Yasuaki Mitsugi (The University of Tokyo)*; Jumpei Baba (The University of Tokyo)
16:50-17:15	ID:219 LVRT performance improvement of a PV power plant for asymmetric faults Yoshihiro Tawada (TMEiC)*; Shivalika Sharma (TMEiC Japan); Yamabe Kenta (TMEiC); Ruben inzunza (TMEiC); Yasuaki Mitsugi (TMEiC)	ID:236 A High-Frequency Flying- capacitor Linear Amplifier for Wireless Power Transfer Systems Shunsaku Nomoto (Nagaoka University of Technology)*; Keisuke Kusaka (Nagaoka University of Technology)	ID:248 Loss of Grid Behavior for a Grid Forming ESS Inverter Shivalika Sharma (TMEiC Japan)*; Ruben inzunza (TMEiC); Umeno Chieko (TMEiC Corporation); Yasuaki Mitsugi (TMEiC); Daisuke Kanda (TMEiC Corporation); Kenta Yamabe (TMEiC Corporation)
17:15-17:40	ID:209 Design of High-Frequency Single-Input Multiple-Output Wireless Power Transfer System with Parasitic Capacitance of Coupled Coils Tomoya Akasaka (Chiba institute of Technology)*; Xiuqin Wei (Nil)	ID:220 Fleet Characteristics Analysis for the Generation of a Generic Commercial Fleet Model Andreas Stadler (Helmut Schmidt University)*; Maik Plenz (Helmut- Schmidt University); Detlef Schulz (Helmut Schmidt University)	ID:240 High Frequency Half-Bridge Resonant Converter with Synchronous Rectification for High Input Voltage Applications Pin-Xiang Huang (National Cheng-Kung University); Tsorng-Juu Liang (National Cheng-Kung University); Kai-Hui Chen (National Cheng-Kung University)*

	Date: November 12, 2024
	KEYNOTE at Room 102
9:00-9:50	Speaker: Professor Dr. Kan Akatsu High performance motor drive techniques by multiple inverters Chairs: Professor Kiyoshi Ohishi, Dr. Mehdi Bagheri
	KEYNOTE at Room 102
9:50-10:40	Speaker: Dr. Hitoshi Hayashia Trends of challenges to zero carbon by railway companies in Japan Chairs: Professor I. Ewean Davidson, Professor Seref Sagiroglu
10:40-11:10	COFFEE BREAK
	KEYNOTE at Room 102
11:10-12:00	Speaker: Prof. Dr. Huang-Jen Chiu High Power Density and High Frequency Converter Design Chairs: Professor Nihal Kularatna, Professor V. Fernao Pires
12:00-13:00	LUNCH

		D	ate: November	⁻ 12, 2024			
	ORAL PRESENTA	TIONS			ORAL PRES	SENTATIONS	
Contribute to the Distribution Syst	version Technologies that Modernization of Power	OS 10: Advancements Electronics for Flexib Systems CHAIRS: Jinbin Zhao		SESSION 14 CHAIRS: Kun-Che Ho		SESSION 15 CHAIRS: Wataru Kitag Takeshita	jawa, Takaharu
Room	101A	Room	101B	Room	101C	Room	102
13:00-13:25	Multilevel Inverter Topology for	ID:9 M3c-based Bipd Scheme For Offshort Lijun Zhang (Shangha Electric Power), Jiaju University of Electric (Shanghai University Jinbin Zhao (China), X (Shanghai University	e Wind Power ai University of n Qin (Shanghai Power), Feng Jia of Electric Power), Kiangxiang Wei	ID:287 Enhancing Re Utilization: Perform: Hydrogen-Natural G KSM Static Mixer Jun Zheng (Beihang I Weiqing Xu (Beihang Zhou (Jiangsu Vocati information Technolo	ance Analysis of as Blending with Jniversity)*; university); Xiang onal College of	ID:253 A Novel Appr Energy Trading Opti Incentives and Carb Mayank Mr Arora (La Gururaj M Vishwanal of Technology Kanpu Sharma (iiT Kanpur); (La Trobe University)	mizing Prosumer on Footprint I Trobe University)*; th (indian institute r); Prof. Ankush Naveen Chilamkurti
13:25-13:50	Watanabe (Nagaoka University of Technology); Keisuke Kusaka (Nagaoka University of Technology); Yushi Miura (Nagaoka University of Technology); Jun- ichi Itoh (Nagaoka University of	ID:124 Active Suppo For Virtual Flux In Of Flexible Direct-curre chao pan (Shanghai I Power), Jinbin Zhao ((Shanghai Electric Po Yuanjun Hou (Shangh Electric Power)	ffshore Wind Power nt Transmission Jniversity of Electric China), zhiwei zeng wer University),	ID:296 Design of Du. Rectifier in Wireless Systems Yinchen Xie (Chiba ui Zhu (Tokyo Universit Komiyama (Chiba Un Komanaka (Chiba Unive (Chiba University); H University)	Power Transfer niversity)*; Wenqi y of Science); Yutaro iversity); Ayano iversity); Akihiro rsity); Kien Nguyen	ID:254 A Numerical : Rotation in a Rotatir Energy Converter Yu Nishihara (Nagasa	g Pendulum Wave
13:50-14:15	ID:158 Voltage Control in Distribution Systems with Solid- State Transformers Using Online Particle Swarm Optimization Zihang Gao (Yokohama National University)*; Takao Tsuji (Yokohama National University)	ID:154 Analysis of D Capacity Optimizatic Based On Pedf Micro Yuanjun Hou (Shangh Electric Power), Jinb chao pan (Shanghai U Power)	on Configuration ogrid nai University of in Zhao (China),	ID:293 A Study High Wire Concept for So Transformer Che-Wei Hsu (Nation University)*; Jiann Fu Cheng Kung Universi	lid-State al Cheng Kung uh Chen (National	ID:256 Adaptive Cor DC Converter for Ed Kazuhiro Kajiwara (N Applied Science); Tak (Nagasaki institute o Yudai Furukawa (Nag Applied Science); Fuj (Nagasaki institute o	ge Server agasaki institute of tato Suzuta f Applied Science)*; tasaki institute of to Kurokawa
14:15-14:40	ID:436 Galvanic Isolation Switch Activation Mechanism for Hybrid DC Circuit Breakers Using Very High Current Capability of Supercapacitors Chamara Dassanayake (University of Waikato)*; Nihal Kularatna (University of Waikato); D. Alistair Steyn-Ros (The University of Waikato); nicoloy Gurusinghe (Sri Lanka Technological Campus)	ID:263 Dynamic volt strategy of offshore flexible transmissior Lingyu Guo (State Gri Municipal Electric Po Xingang Yang (State Grid S Electric Power Compi (Shanghai University Zhongguang Yang (St Municipal Electric Po Jia (Shanghai Universi Power)*	wind farm with a techniques id Shanghai wer Company); Grid Shanghai wer Company); Shanghai Municipal any); Qiming Wang of Electric Power); tate Grid Shanghai wer Company); Feng	ID:297 Intelectual M of Renewables in th for Low Emission Stu Ruslan Omirgaliyev (University)*; Svetlan Gumilyov Eurasian N Korhan KAYISLi (Gazi Bapiyev (Zhangir kha Agrarian - technical u Nurlan (L.N. Gumilyo University); Aidos Sa University)	e Energy Balance rategy Astana iT a S Zhakiyeva (L.N. ational University); University); ideyat n West Kazakhstan university); Zhanserik v Eurasian National	ID:410 Design and C Analysis of Synchror Frame based Enhand Management with N Algorithms izviye Fatimanur Tep Orhan KAPLAN (Gazi irmak (Gazi Universit Bayindir (Gazi Univer	ous Reference eed Power Quality Metaheuristic e (Gazi University); University); Erdal y)*; Ramazan
14:40-15:05	ID:290 Three-Level Neutral-Point Clamped CLLC Resonant Tank Design for MVDC Systems Che-Wei Hsu (National Cheng Kung University); Min-Han Wen	ID:305 De-loading contro support of the dynamic lo power system Lingyu Guo (State Grid Sh Electric Power Company)	ow frequency wind anghai Municipal ; Yang Du (State Grid ; Yower Company); Grid Shanghai Municipal ; Ningqian Yuan (State Electric Power te Grid Shanghai Company); Feng Jia	ID:299 200kHz 3kW Ended WPT System Switching-Loss Redu Masahito Tsuno (Nic HiDEKi OMORi (Naga Applied Science)*; Ta Nakamoto(Mitsubish sato (AiST); Fujio Kur institute of Applied S	with a New action Method hicon Co. Ltd.); asaki institute of aku ni Electric); hiroshi okawa (Nagasaki	ID:33 Predictive Moo Vehicle Charging Ses Validation of an Italy Alessandro Saldarini Milano); Sofia Borg Milano); Michela Lor Milano); Dario Zanin Milano); Paolo Peran	sions: An empirical <i>p</i> -France route (Politecnico di osano (Politecnico di igo (Politecnico di elli (Politecnico di
15:05-15:35			COFF	EE BREAK			

Date: November 12, 2024

	ORAL PRESENTA	TIONS			ORAL PRES	ENTATIONS		
SESSION 16 Architect CHAIRS: Ramazan Bayindir, Onder Eyeciogiu CHAIRS: Cordeiro		Architecture, Topolog Applications-1 CHAIRS: Vitor Fernão	Applications-1 HAIRS: Vitor Fernão Pires, Armando Cordeiro		SESSION 17 CHAIRS: Ching-Jan Chen, Kuo-Yuan Lo		SESSION 18 CHAIRS:Elmira Jamei, Mehdi Seyedmahmoudian	
Room	104	Room	109	Room	110	Room	111	
13:00-13:25	ID:324 ADAPTATION and IMPLEMENTATION of A BUILDING MANAGEMENT SYSTEM for A LITERATURE MUSEUM Harrouz Abdelkader (Department of Hydrocarbon and Renewable Energy, Laboratory (LEESi), University of Adrar, Algeria)*; Hayat Bensoudan (Department of Hydrocarbon and Renewable Energy, Laboratory (LEESi), University of Adrar, Algeria)	ID:39 A Single-Switc with a High Voltage Reduced Voltage Str for Renewable Ener V. Fernao Pires (ESTS Armando Cordeiro (i: Foito (ESTSetubal - if Monteiro (iSEL); Još Universidade de Lisb	Gain Capability and ress of the Switch gy Applications ietubal/iPS)*; SEL - iPL); Daniel 2S); Joaquim 2 Silva (iNESC-iD, iST,	Systems in Microg Large Induction Mi i-Sheng Lai (Nation University); Che-Mi Corporation); Ming Steel Corporation);	otors al Sun Yat-sen in Lin (China Steel I-Hsiang Huang (China Cheng-Chieh Shen ration); Jen-Hao Teng	ID:339 Expansion of Reluctance Motor D weakening Control Vector Control Keitaro Kawarazaki (Sceince)*; Nobukazu University of Science	riving Range by Flux- under Current Tokyo University of ı Hoshi (Tokyo	
13:25-13:50	ID:137 Transmission Expansion Planning with Photovoltaic Generation Penetration Patricia Pasmay (ESPOL); Gomer Abel Rubio (Escuela Superior Politécnica del Litoral (ESPOL))*; Homero Ojeda (ESPOL); Sixifo Falcones (ESPOL)	ID:75 Isolated Quasi Integrated T-Type D DC Microgrid Daniel Ferreira (ISEL de Engenharia de Lis Cordeiro (ISEL - IPL)* (ISEL-IPL); Prof. Enriq (University of Extrem Carlos Roncero-Clem Extremadura); José S Universidade de Lisb (ESTSetubal - IPS); J. (FCT/UNL); V. Fernac (ESTSetubal/IPS)	C-DC Converter for - instituto Superior boa); Armando ; Luis EncarnaCão jue Romero-Cadaval nadura, Spain); eente (University of iilva (iNESC-iD, iST, oa); Daniel Foito F. Martins	Bidirectional DC Po	AKASAGO, LTD.)*; KASAGO, LTD.); (TAKASAGO, LTD.);	ID:343 Strategic Gre Smart Grids: Boostin Adoption of Sustain Technologies Hafize Nurgul Durm University); ilhami C University); Ramazai University)*	n g Consumer la ble Energy us Senyapar (Gazi olak (istinye	
13:50-14:15	ID:145 Implementation of Proton Exchange Membrane Fuel Cells in Agricultural Areas: Technical and Economic Benefits Eduardo Marcelo Benavides (ESPOL); Gomer Abel Rubio (Escuela Superior Politécnica del Litoral (ESPOL); wilton edixon Agila (ESPOL); Luis Muñoz (Escuela Superior Politécnica del Litoral(ESPOL))	ID:49 Diagnosing Po Faults in Multilevel Switch Inverter Usin Indexes Joaquim Monteiro (i Pires (ESTSetubal/iPS	T-Type Based Nine g Center of Mass SEL)*; V. Fernao	Smart Homes Base Reinforcement Lea Kuangpu Liu (Aalbo Hanwen Zhang (Aa	arning org university)*; Iborg University); org University); Kaiqi rsity); Zhe Chen	ID:334 Digital Marko Smart Grids: Utilizin to Drive Awareness Hafize Nurgul Durm University); ilhami C University); Ramaza University)*	g Online Platforms and Adoption us Senyapar (Gazi olak (istinye	
14:15-14:40	and Comparison With Field	ID:53 Total Harmoni Reduction in Three- Harun Fecri ASLAN (i University)*; Harun A Aydin University); M (istanbul Aydin Unive	Phase PV Inverters stanbul Aydin ASLAN (istanbul urtaza Farsadi	ID:306 Investigatic Battery Storage Sy Applications Michele Pastorelli (Torino)*; Mariapia Politecnico di Torin (Politecnico di Torin Musumeci (Politecn	stems for Shipboard Politecnico di Martino (Denerg - io); Fabio Mandrile no); Salvatore	ID:355 Comparative Multisampling Meth Phase Grid-Connect Bridge Multilevel In Giuseppe Sorrentino Palermo); Claudio N. of Palermo); Gioacch (University of Palern Schettino (University Michele Pastorelli (P Rosario Miceli (Univ	nods for Three- ed Cascaded H- verters (University of evoloso (University nino Scaglione no); Giuseppe y of Palermo); volitecnico di Torino);	
14:40-15:05	ID:438 Spatiotemporal Wind Energy Assessment for Transmission Network Integration Considering the Location of Electrical Substations and Loads Kwabena A. Kyeremeh (University of Kentucky)*; Rosemary E. Alden (University of Kentucky); Aron Patrick (PPL Corporation); Dan M. ionel (University of Kentucky)	ID:43 Startup-based Fault Detection and Feature Extraction o Image Tito Amaral (ESTSetu Foito (ESTSetubal - if (Polytechnical institu Rosario Miceli (Univ Fabio Viola (Universi Fernao Pires (ESTSetu	Diagnosis Using if the S-Transform bal/iPS)*; Daniel 2S); Armando Pires ite of Setubal); rersity of Palermo); tà di Palermo); V.	and Super capacito Abdelhakim Belkaio Ali BERBOUCHA (Bo aissou (université o Colak (istinye Unive Djermouni (Bejaia I	hotovoltaic/battery or d (Bejaia University)*; ejaia University); said of Béjaia); ilhami ersity); Kamel University); Elyazid ia University); Korhan	ID:356 Comparison Design Methods for Cascaded H-Bridge I Giuseppe Sorrentinc Palermo); Giuseppe of Palermo); Claudio (University of Palern Valtchev (FCT/UNL); Scaglione (University Rosario Miceli (Univ Aqeel Ur Rahman (Palermo)	Grid-Connected Multilevel Inverters (University of Schettino (University Nevoloso no); Stanimir Gioacchino y of Palermo); versity of Palermo)*;	
15:05-15:35		·	COFF	EE BREAK		•		

60

			Date: November	[.] 12, 2024				
	ORAL PRESENTA	TIONS			ORAL PRES	SENTATIONS		
OS 12: Innovations in Renewable Energy and Energy Efficiency: Advancing Control Systems and Optimization Techniques CHAIRS: Kun-Che Ho, Yi-Feng Luo		stainable Energy	for Microgrids CHAIRS: Keiichi Hirose, Ryuichi		OS 15: Advanced Power Conversion Techniques and Controls for High Performance and Efficiency CHAIRS: Ching-Jan Chan, Kuo-Yuan Lo			
Room	101A	Room	101B	Room	101C	Room	102	
15:35-16:00	ID:230 Load Frequency Control of Hybrid Power System using Marine Predator Algorithm tuned Cascaded Controller Muhammad Shahzad (King Fahd University of Petroleum and Minerals) Muhammad Majid Gulzar (King Fahd University of Petroleum and Minerals) ; Aqsa Shahzad (3Comsats institute of information Technology); Adnan Shakoor (King Fahd University of Petroleum and Minerals) Salman Habib (King Fahd University of Petroleum and Minerals)	ID:389 Long-Term T Disruption in Mediu Electronics Uwe Drofenik (TU W (TU Wien)	ım Voltage Power	ID:50 Procedures of A For Microgrid Supplie Inverter With Battery Yasuhiro Taguchi (Ener Technology Research I Tsuji (Isuzu Ltd.), Junic Environment Technolo Ryuichi Yokoyama (Ene Technology Research I Yamashita (Pacific Con	d Power By An gy and Environment nstitute), Shigeyuki hi Arai (Energy and gy Research Institute), argy and Environment nstitute), Daiki	ID:37 Switching Inst for MHz CrM Totem Real-Time Calculatio Yong-Yi Huang (Natio University of Techno (NTUT)*	-Pole PFC without ons onal Taipei	
16:00-16:25	ID:245 Optimal Control Method for LLC Resonant Convertor of EV Battery Chargers Abdullah Memon (King Fahd University of Petroleum and Minerals) Muhammad Majid Gulzar (King Fahd University of Petroleum and Minerals)*; Noman Bashir (King Fahd University of Petroleum and Minerals) Salaman Habib (King Fahd University of Petroleum and Minerals) Adnan Shakoor (King Fahd University of Petroleum and Minerals) Farheen Ehsan (Shanghai Jiao Tong University)	Unidirectional High Medium-Voltage A Converter Kohei Budo (Gifu Un ishikawa (Gifu Unive	Addium-Voltage AC-DC Modular Matrix V poverter v ohei Budo (Gifu University)*; Hiroki hikawa (Gifu University); Takaharu akeshita (Nagoya institute of G		ID:388 An Experimental Approach to DC Voltage Stabilization in a Hybrid Microgrid System Guohong WU (Tohoku Gakuin University)*; Hayato igarashi (Tohoku Gakuin University)		ID:149 Multilevel PFC Converter Based on Flying-Capacitor i-Yu Huang (National Kaohsiung University of Science and Technology)*; Cheng-Han Cai (National Kaohsiung University of Science and Technology) KUOYUAN LO (National Kaohsiung University of Science and Technology)	
16:25-16:50	ID:344 Implementation of Heating System for Lithium-ion Batteries in Low Temperature Environments Po-En Lai (National Taiwan Ocean University); Sheng-Chieh Chang (National Taiwan Ocean University); YU SHAN CHENG (National Taiwan Ocean University)*	ID:413 Y-Inversion I multi-source power Yonghwa Lee (Kyoto Advanced Science); (Kyoto University of	networks University of Alberto Castellazzi	supercapacitor-assis DC homes Nirashi Polwaththa G	ppliances based on ted converters for Sallage (University of aratna (University of laratna- iniversity of Steyn-Ros (The	ID:338 A single-phat converter with four and reactive power direct-quadrature co Cheng-Yu Tang (Nati University of Techno (National Taipei Univ Technology)	quadrants active control by using th ontrol onal Taipei logy)*; Da-De Shih	
16:50-17:15	ID:348 An Active Bidirectional Balancer with Maximum Value Balancing Control Algorithm Yi-Feng Luo (NTUST)*, Ya-Shuo Chen (NTUST), Guan-Jhu Chen (National Changhua University of Education Changhua), Chun-Liang Li (Department of Electrical Engineering National Yunlin University of Science and Technology), Yu-Fang Hsueh (NTUST)	Voltage Ripple in Vi Water Electrolysis U Configuration Haein Kim (KNUT(Ko Universiy of Transpo	D:406 Mitigation of 180Hz Midpoint oltage Ripple in Vienna Rectifiers for /ater Electrolysis Using a Parallel onfiguration aein Kim (KNUT(Korea National niversiy of Transportation)); Hag- /one Kim (Korea National Univ. of		ID:445 Status and challenges of energy efficiency & conservation using DC power technologies in Japan Keiichi Hirose		ID:340 Analysis and Efficiency Improvement of Quasi-Resonant Flyback Converter with Adaptive Valley Detection and Variable Frequency Control Lin Ting Jia (National Taiwan University), you shiang tseng (national taipei of University technology); Chun-Cheng Shih (National Yunlin University of Science and Technology); ching-jan chen (National Taiwan University)*	
17:15-17:40	ID:357 An Optimized Dimming Technique for High-Brightness LEDs Based on Variable Voltage Commands Kun-Che Ho (National Formosa University)*; Yi-Jun Lai (Taiwan Power Research institute); Yu- Ching Kao (National Taiwan Ocean University); YU SHAN CHENG (National Taiwan Ocean University)	ID:420 Fuel Cell-bat Management Syste Jungcheol Kang (Gye University), Se-Kyo (National University)	m For Evtol Drones eongsang National Chung (Gyeongsang	ID:51 Renewable Po Maximization for UA Sliding Mode Contro Khalid Mohammad A Ali Nasir (KFUPM); N Fahd University of Pe Minerals); Ayman Al	NS with Adaptive of Il-Fuwail (KFUPM)*; Ad Shafiullah (King etroleum and	ID:393 Design of Mc Up Converter with I Efficiency for Power Testing Kai-Wei Lin (Nationa Chi-Yuan Huang (Nat University); Yaow-M Taiwan University)*	mproved Light-Load Semiconductor I Taiwan University) tional Taiwan	

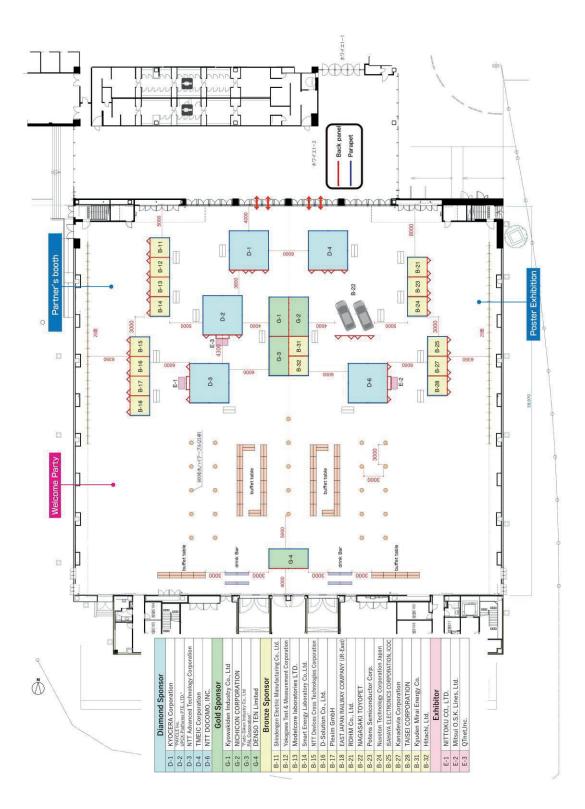
Date: November 12, 2024

	ORAL PRESENTA	TIONS			ORAL PRES	ENTATIONS	
SESSION 19 CHAIRS: Keiichi	Hirose, Nihal Kularatna	OS 15: Advancement: Architecture, Topolog Applications-2 CHAIRS: Vitor Fernão Cordeiro	gy, Control and	SESSION 20 CHAIRS: Jinbin Zhao, Kuangpu Liu SESSION 21 CHAIRS: Ramazan Bayindir, Eyecioglu		ayindir, Onder	
Room	104	Room	109	Room	110	Room	111
15:35-16:00	ID:329 Digital Predictive-based Interleaving Control Scheme for Critical Conduction Mode Boost PFC Converter Jizhe Wang (Fukuoka University)*; Shuai Yang (Meraki integrated); Shanghua Feng (Guangdong Carrier Heating, Ventilation and Air Conditioning Company Ltd.); Tadashi Suetsugu (Fukuoka University); Fujio Kurokawa (Nagasaki institute of Applied Science)	System and Wind Tu Function Shinya Ohara (Kitam Technology)*; Shin'y institute of Technolo (Kitami institute of T	tery Energy Storage urbines' Curtailment i institute of a Obara (Kitami gy); Rion Takahashi echnology); Kazuo ır Solutions Co., Ltd.);	Direct Coupled PV B High Efficiency Oper Yasuyuki Kanai (Exec Kurokawa (Nagasaki Science)	attery Systems for ration o Group, inc.)*; Fujio	Coils for Wireless E Lucas A Gastineau (U Kentucky)*; Donovir	Inductive Polyphase V Charging
16:00-16:25	ID:64 Configuration Optimization of Dual Active Bridge Converter Systems for Interfacing Large- Scale Water Electrolyzer with Stand-Alone Renewables Thibaut Runser (Siemens Energy)*; Sebastian Arend (Reverion); Tim Karsten (RWTH Aachen University); Amandus Bach (RWTH Aachen University); Rik W. De Doncker (RWTH Aachen University)	ID:308 Loss Analysis Converter Module o Transformer Adel Nasiri (Universi Carolina)*; Necmi Al South Carolina); Sab (University of South	of Solid-State ty of South tin (University of an Ozdemir	ID:399 Current Statu and Long-Term Win in the Literature Mehmet Yesilbudak Bektas Veli Universit (Nevsehir Haci Bekta	d Power Forecasting (Nevsehir Haci :y)*; Mustafa Benli	ID:440 Smart Syster Devices for Monitor Electric Vehicle Resi Grant M Fischer (Un Kentucky)*; Steven F Kentucky); Roseman (University of Kentu Lewis (University of F ionel (University of F	ing and Control of dential Charging iversity of Poore (University of y E. Alden cky); Donovin D Kentucky); Dan M.
16:25-16:50	ID:126 An European-based Erasmus Mundus pathway for the higher education in the Hydrogen sector Mariapia Martino (Denerg - Politecnico di Torino)*, Massimo Santarelli (Politecnico di Torino); Gianluca Valenti (Politecnico di Milano); Attila Usar (Universitat Politecnica de Catalunya); Nicola Paltrinieri (Norwegian University of Science and Technology); Thijs de Grot (Technical University of Eindhoven)	Short-Term Solar Ph Forecasting Nattha Thipwangme University); Kampol University); Nopparu Mai University); Nat	recasting attha Thipwangmek (Chiang Mai hiversity); Kampol Woradit (Chiang Mai hiversity); Nopparuj Suetrong (Chiang al University): Natthanan Promsuk Yonezawa (Na		gate driver source and active ya University)*; h University); Yu Jniversity); Jun versity); MASAYOSHi	Differential Evolutic Design of Electric Ai Motors David R Stewart (Un Kentucky)*; Matin V Kentucky); Roseman (University of Kentuc Lewis (University of	rcraft Propulsion iversity of atani (University of y E. Alden cky); Donovin D Kentucky); Pedram ege London); Dan M.
16:50-17:15	ID:316 Efficiency and cost analysis of solar production by Fixed and Tracking systems: a prospective study for Al using Mmaduabuchukwu Chidiebere Kanu (Univer. Paris Est Creteil)*; Abdou Tankari Mahamadou (University of Paris Est Creteil, Certes Lab.); Pierre- Olivier Logerais (Université Paris Est, CERTES, iUT de Sénart- Fontainebleau); Lefebvre Gilles (Øniversity of Paris Est Creteil, Certes Lab.); Ramazan Bayindir (Gazi University)	Buck Boost DC-DC C Switch and Reduced Armando Cordeiro (i Gambôa (iSEL-iPL); R Pedro Fonte (iSEL); J (ISEL); J. F. Martins (i (iNESC-iD, iST, Unive	ransformerless Ultra-High Gain ost DC-DC Converter with Single nd Reduced Voltage Stress Cordeiro (iSEL - iPL)*; Paulo (iSEL-iPL); Ricardo Luís (iSEL); Dynamic Voltage Restorers Seyfettin Vadi (Gazi University)*; ilhami Colak (istriye University); Ramazan D, IST, Universidade de Lisboa); pito (ESTSetubal - iPS); V. Fernao		ID:84 Collectivist and Individualist End- user Values in the Digital Energy Community Ecosystem Sanna Tuomela (University of Vaasa)*; Jouni K. Juntunen (University of Vaasa)		
17:15-17:40	ID:327 Resilience and Frequency Control in Low-Inertia Power Systems: Challenges and Solutions Ayse Colak (University of Strathclyde)*; Mohamed Abouyehia (university of strathclyde); Dr K Ahmed (Strathclyde)	ID:285 Fault Diagno on the Stockwell Tr Multilevel Converte Reluctance Motor D José-inácio Rocha (E Amaral (ESTSetubal/ (ESTSetubal - iPS); A (Polytechnical institu Fernao Pires (ESTSet	ansform for a r of a Switched rive STSetubal/iPS)*; Tito iPS); Daniel Foito rmando Pires ite of Setubal); V.	ID:310 Design and C Forced-Air Cooling S Compact Medium V Inverter Adel Nasiri (Universi Carolina)*; Hooman of South Carolina); P (University of South (University of South	ystem for a oltage Solar PV ty of South Taghavi (University arthkumar Bhuvela Carolina); Jamil Khan	Canada Wahiba Yaici (Canmet Centre / Natural Resou Evgueniy Entchev (Car Centre / Natural Resou Longo (Politecnico di N (University of Nevada	ems for Residential A Feasibility Study in ENERGY Research urces Canada)*; urmetENERGY Research urces Canada); Michela Vilano); Heejin Cho Las Vegas); Jian Zhang in-Green Bay); Andres

		Da	ate: November	13, 2024				
	ORAL PRESENTA	TIONS			ORAL PRES	ENTATIONS		
Energy at Aichi In Research Center	Research Results of Renewable Istitute of Technology Eco Power ⁄ukita, Toshiya Nanahara	OS 17: Energy Enginea Energy, Electronics, ar - Power Network Mana CHAIRS: Hiroo Sekiya, Nakashima	nd Communications gement and Control	OS 18: Power Electror Efficient Computing CHAIRS: Yuichiro Shi		SESSION 22 CHAIRS: Yongheng Y	ang, Yinxiao Zhu	
Room	101A	Room	101B	Room	102	Room	111	
09:00-09:25	ID:404 Minimal Short Circuit Ratio for Inverter-Based Resources Considering Transmission Loss Impact of Resistance to Reactance Ratio of Looking-Back Impedance Toshiya Nanahara (Aichi institute of Technology)*; Yasuaki Yamada (Aich institute of Technology); Akihiro Tsusaka (Aichi institute of Technology); Kazuto YUKITA (Aichi institute of Technology)	ID:345 Calcination co dependence of the p properties of sol-gel thin films on silicon s Ryosuke Watanabe (H University)*; Mizuho I University); Yoji Saito	assivation deposited alumina ubstrates lirosaki Kawashima (Seikei	ID:162 Proposal of a Applying Digital LDO Measurement of CPU Asahi Honda (Nagasa Miyu Kobayashi (Nag Tatsunosuke Shiota (I University); Takumi C University); Yoichi ish University); Yuichiro : University)	s to Current Js ki University)*; asaki University); Nagasaki)BAYASHi (Nagasaki iizuka (Nagasaki	ID:371 Design, Analy of High-Level Three- Converter with Dual Configuration Marif Daula Siddique University of Techno Seyedmahmousian (S and Electrical Engine Victoria); Saad Mekh University of Techno Stojcevski (School of Electrical Engineering Victoria)	Phase dc/ac Source/Phase : (Swinburne logy)*; Mehdi School of Software ering, Swinburne, ilef (Swinburne logy); Alex Software and	
09:25-09:50	ID:428 A Study on DC Power Distribution Using Transformer with Special Winding Structure in Renewable Energy-Integrated Grid Takuya Goto (Aichi institute of Technology); Akihiro Tsusaka (Aichi institute of Technology); Akari Matsunaga (Aichi institute of Technology); Din Nguyen (Hanoi University of Science and Technology); Kazuto YUKITA (Aichi institute of Technology)*	Electricity Demand FC Comparative Analysis Learning Models for I Decarbonization DiFEI MIYAO (NTT DO	359 Time and Day-Based Peak ectricity Demand Forecasting: A T imparative Analysis of Machine L arning Models for Peak Cut and ecarbonization L FEI MIYAO (NTT DOCOMO, iNC.)*; L asaki Nakamura (NTT DOCOMO, iNC.) L		ID:180 Energy Efficiency Analysis of Vector Extension for a Processor Tightly Coupled with Power Supply Tatsunosuke Shiota (Nagasaki University); Takumi OBAYASHi (Nagasaki University); Asahi Honda (Nagasaki University); Miyu Kobayashi (Nagasaki University); Taito Manabe (Nagasaki University); Yoichi ishizuka (Nagasaki University); Yuichiro Shibata (Nagasaki University);*		of BATTERY N FROM LEAD-ACID MER BATTERIES by 5 and SOURCE N EFFICIENT Inka Electricity rijekoon (Post 5 Science, University	
09:50-10:15	ID:429 A Study on Locate Method of Series Arc Fault Point in Photovoltaic Generation System Akihiro Tsusaka (Aichi institute of Technology)*; Sora Hasegawa (Aichi institute of Technology); Toshiya Nanahara (Aichi institute of Technology); Yasuyuki Goto (Aichi institute of Technology); Akinori Kato (Kawamura Electric inc.)	ID:396 Model-based energy management renewable energy Yoshiyasu Nakashima Technologies Corp.)*	systems for	ID:207 Energy Efficie Branch Prediction fo Tightly Coupled with Takumi OBAYASHi (N Tatsunosuke Shiota (I University); Asahi Ho University); Taito Ma University); Taito Ma University); Yoichi ish University); Yoichi os University); Yuichiro : University)*	r a Processor Power Supply agasaki University); Nagasaki nda (Nagasaki naba (Nagasaki nabe (Nagasaki nizuka (Nagasaki	ID:89 Analyzing of E for Catalyst Layer Fo Electrolyte Membra Hikaru Arai (Tokyo U Science)*, Noboru K University of Science	rmation in Polymer ne Fuel Cells niversity of atayama (Tokyo	
10:15-10:40	ID:431 A Study of Rectifier Circuit Failure with Special Winding Type Twenty-four-phase Transformer Akari Matsunaga (Aichi institute of Technology); Kazuto YUKiTA (Aichi institute of Technology)*; Takuya Goto (Aichi institute of Technology); Toshiya Nanahara (Aichi institute of Technology); Akinori Kato (Kawamura Electric inc.)	using source-potentia Souma Jinno (Osaka ir Technology)*; Hiroshi	II 578 Near-field antenna analysis Iing source-potential energy Yuma Jinno (Osaka institute of Ycchnology)*; Hiroshi Toki (Osaka Yiversity); Masayuki Abe (Osaka Tiversity) E C		ID:243 Development of a Power Supply for Optogenetic Devices Used in Continuous Mouse Experiments with Renal Sympathetic Nerve Stimulation Yuri Kabashima (Nagasaki University); Yoichi ishizuka (Nagasaki University); Tsuyoshi inoue (Nagasaki University); Ryusuke Umene (Nagasaki University); Eri Sakuda (Nagasaki University); Gen Onodera (Nagasaki University); Tomohirc Furusato (Nagasaki University)		ID:71 Comparison of Rapid Charging Performance for Lithium-Ion Batteries with Various Positive Electrode Active Materials Kota Kojima (Kanazawa institute of Technology)*; Akihiko Kono (Kanazawa institute of Technology); Yoji Fujita (Kanazawa institute of Technology); Noriaki ikenaga (Kanazawa institute of	
10:40-11:05	ID:430 Development Of Pole- changing Generator For Small Wind Power Generation Tadashi HOSOE (Aichi Institute of Technology); Takuya Goto (Aichi Institute of Technology); Sena Yamashita (Aichi Institute of Technology); Omi Muto (Aichi Institute of Technology); Keiichi Hirose (NEDO); Kazuto YUKITA (Aichi Institute of Technology)	ID:367 Wind-Lens Eff Power Plant Installed Toshihiko ishiyama (H of Technology)*; Fujic SHOKAi Co. Ltd.)	in Airflow Duct achinohe institute	ID:172 Common Mo with Balance Techni Soft Saturation Char Yota Omizu (Nagoya Choi (Nagoya University); YAMAMOTO (Nagoya	que Considering acteristics University)*; Sihoon sity); Jun imaoka MASAYOSHi	ID:77 Modeling and Multi-Cycle Controll Converter Hideaki Funaki (Kyus MASAHiTO SHOYAM University); Takashi ` University); Yu Yonez University); Akihiko I Core Laboratories LT	ed LLC Resonant hu University)*; A (Kyushu Yoshida (Kyushu tawa (Nagoya Miyazawa (Model	
11:05-11:35		<u> </u>	COFE	EE BREAK		1		

	Date: November 1	3, 2024	
SESSION 23 CHAIRS: Hannah Mer	ORAL PRESENTATI	ONS SESSION 24 CHAIRS: Kazuhiro Ka Konishi	jiwara, Toshifumi
Room	110	Room	112
	ID:110 Tensor Network-Based Lightweight Energy Forecasting for Virtual Power Plant Daichi Watari (KYOCERA Corporation)*; Hiroki Tanimoto (KYOCERA Cooperation); Tsuyoshi Okubo (University of Tokyo); Synge Todo (University of Tokyo); Kaoru Nishiyama (KYOCERA Cooperation)	ID:403 A Study on Lo Series Arc Fault Poin Generation System Akihiro Tsusaka (Aich Technology)*; Sora H institute of Technolo Nanahara (Aichi Insti Yasuyuki Goto (Aichi Technology); Akinori Electric inc.)	t in Photovoltaic ni institute of lasegawa (Aichi gy); Toshiya tute of Technology); institute of
09:25-09:50	ID:114 Assessment for Suitable Distributed Energy Resource Utilization to Mitigate Impact on Voltage under Congestion Management Ryuji Shitara (Waseda University)*; Akihisa Kaneko (Waseda University); Yu Fujimoto (Waseda University); Yutaka iino (Waseda University); Yasuhiro Hayashi (Waseda University)	ID:323 Modeling of A System Pilot Throug Electrolysis and Pv S Water Resource Vale Fields Hayder Rincón (Univ Juan Carlos Rozo (Un Rosario), DAVID CELE DE LA SABANA), And Gordillo (Universidac Castellanos (UNIVER: SABANA)	h Wastewater olar Energy For orization In O&g ersidad del Rosario), iversidad del ITA (UNIVERSIDAD rés Mauricio Pérez I del Rosario), Jorge
	ID:116 Research of the PV Power Plant Installed in Electric Railway Power Supply Grid Kasumi Taike (East Japan Railway Company)*; Kota Minaminosono (East Japan Railway Company); Junichi Shiraishi (East Japan Railway Company); Takashi Ozaki (East Japan Railway Company); Takashi Suzuki (East Japan Railway Company); Hitoshi Hayashiya (East Japan Railway Company)	ID:326 Forecasting o Using ARIMA Medine Colak (Gazi U	
10:15-10:40	ID:119 Application of Temperature Balancing in Paralleled Power Supply Systems with Current-sharing Control Chien-Chih Hung (National Tsing Hua University)*; Tsai-Fu Wu (National Tsing Hua University); Jui- Yang Chiu (National Tsing Hua University); Yun-Hsiang Chang (National Tsing Hua University)	ID:123 JR East's Ren Development Projec Kenichi Yamamori (E Company)*; Seiichi O Railway Company); N Japan Railway Comp	ts in Tohoku area ast Japan Railway hida (East Japan Masayo Hatae (East
10:40-11:05	ID:121 Anomaly Detection and Factor Estimation using Graph Neural Network with Storage Battery Yuta Shinozaki (kyocera- minatomirai)*	ID:18 A Simplified Fo Controller for PV Em Saba Javed (The Univ Edinburgh)*; Jonatha University of Edinbur University of Edinbur	ulation rersity of an Shek (The rgh); Max Malyi (The
11:05-11:35	COFF	EE BREAK	

	Date: November 13, 2024							
	ORAL PRESENTA	TIONS			ORAL PRES	SENTATIONS		
SESSION 25 CHAIRS: Kazuto Vukita, Tashiya Nanahara		SESSION 26 CHAIRS: Hiroo Sekiyi Nakashima	a, Yoshiyasu	SESSION 27 CHAIRS: Yuichiro Shi	ibata, Yoichi Ishizuka	OS 19: Emerging Tec Renewable-Rich Pow Modeling and Contro CHAIRS: Yongheng Y	ver Grids: Design, ol	
Room	101A	Room	101B	Room	102	Room	111	
11:35-12:00	ID:150 Rocof Threshold-based Gain Scheduling For Ffr Implementation In High Renewable Power Systems Meng-Yun Lee (National Taiwan University), Chih-Wen Liu (National Taiwan University)	ID:38 Impactful driv for e-Bus service op assessment through environment Andrea Di Martino (I Milano)*; Michela Lo Milano); Stefano Ros S.p.A.); Dario Zanine Milano)	erations: n virtual Politecnico di ongo (Politecnico di ssi (Autoguidovie	ID:418 Evaluation of Losses in Single-Pha Inverters: A Compar and GaN Devices Marif Daula Siddique University of Techno Seyedmahmousian (S and Electrical Engine Victoria); Saad Mekh University of Techno Stojcevski (Curtin Sin	se H-Bridge rative Study of IGBT (Swinburne logy)*; Mehdi School of Software erring, Swinburne, illef (Swinburne logy); Alex	Technology (KiT)); M (Karlsruhe institute o Uwe KUhnapfel (Kar	eled Images soodhanan of Technology ann (Karlsruhe ogy (KiT)); Pascal (arlsruhe institute of larco Schott of Technology (KiT)); rlsruhe institute of agenmeyer (Karlsruhe	
12:00-12:25	ID:175 Development of High- quality High-efficiency High- reliability 6.6kv 12mva Multiple Power Compensator Chen Xiao Zhang (TMEIC Corporation), Kenta Takei (株式会社TMEIC), Tatsuya Takami (株式会社TMEIC)	Context: a Model fo Transmitter Position Cristian G Colombo (Milano)*; Michela Lo Milano); Ryosuke Ot Metropolitan Univer	Context: a Model for Optimal Transmitter Positioning Cristian G Colombo (Politecnico di Milano)*; Michela Longo (Politecnico di Milano); Ryosuke Ota (Tokyo Metropolitan University); Harutaka		ID:407 Comparative Analysis of Fuzzy Logic and Pl Control for Harmonic Suppression in Shunt Active Power Filter Rukiye GOk (Gazi University); Alperen Mustafa M Colak (Nagasaki Universiy); Erdal irmak (Gazi University)*; Nihat Ozturk (Gazi University)		elligence-Aided gy for Three-Level dulated with Five liaotong-Liverpool g Wen (XJTLU); xu iverpool university); an Jiaotong-); Yinxiao Zhu	
12:25-12:50	ID:22 A multi-criteria decision- making approach to implement renewable energy system into sport facilities - A feasibility study applied on a wakeboard cable park Niko Nagengast (University Bayreuth)*	ID:392 Open Interfa for Space Based Pov Innocent Davidson;	•	ID:133 Research On Urban Surplus Energy Calculation and Utilization Methods Jewon Oh (Sojo University)		ID:190 Maximum Power Point Tracking of Series-Parallel Connected Bifacial PV Modules Aidha Muhammad Ajmal (Zhejiang University)*; Yongheng Yang (Zhejiang University); Bikash Gyawali (Zhejiang University)		
12:50-14:25		I	I	UNCH				


	Date: November 1	3, 2024					
	ORAL PRESENTATIONS						
SESSION 28 CHAIRS: Ryuji Shitara, Chien-Chih		SESSION 29 CHAIRS: Akihiro Tsu: Yamamori	saka, Kenichi				
Room	110	Room	112				
11:35-12:00	ID:380 Optimising Electric Vehicle Wireless Charging Systems Using Neural Networks to Enable Free- Position Parking. Hannah Merrigan (Nagoya University)*	ID:29 Leveraging syr empower AI models photovoltaic energy in the decarbonizati youssef JOUANE (CES SADDIK (CESI LINEAC ABOUELAZIZ (CESI LI ROLLING (CCCA-BTP) (CCCA-BTP)	to predict production to aid on of buildings Si LiNEACT)*; imad T); iLYASS NEACT); Nathalie				
12:00-12:25	ID:325 Control Algorithm for IoT- Enabled Dual-Axis Solar Tracking System Victor U Karthik (Spring Arbor University)*; Sebastian Smith (Spring Arbor University); Noah Waldron (Spring Arbor University)	ID:30 An Optimal Re Method Integrating Resources for a Stee yi-syuan wu (Nationa University); Jiantang Cheng Kung Universi (Research Center for and Strategy, Depar En)*	Hybrid Energy I Factory Campus al Cheng Kung Liao (National ty); Hong-Tzer Yang Energy Technology				
12:25-12:50	ID:28 From Data to Energy Management: Evaluating and Analysis of Univariate and Multivariate AI Models for Photovoltaic Systems in Smart Grids Mame Cheikh SOW (CESi LiNEACT)*; youssef JOUANE (CESi LiNEACT); Mourad ZGHAL (CESi LiNEACT)	ID:32 Design of Sola Fresnel CSP System Small Scale Model o Printer OzgU iNCESU (Dokuz Evren M Toygar (Dok Tufan Bayram (Solart Energy Systems); Alil Eylul University); Me (Dokuz Eylul Universi (9 EylUl Universitesi)	and Manufacturing f the System by 3D Eylul University)*; tuz Eyll University); ux Alternative nan Metin (Dokuz hmet Sahap San ity); Onurcan GUneS				
12:50-14:25	l	UNCH					

			Date: November	13, 2024			
					ORAL PRES		
	ORAL PRESENTA in Renewable Power Systems: pective for Future Design and ison, A. A. Periola	SESSION 30 CHAIRS: Ugwu Jude (Colombo	Okwudili, Cristian G	SESSION 31 CHAIRS: Asahi Honda, Yuri Kabashima		SESSION 32 CHAIRS: Marif Daula Siddique, Zhichen Feng	
Room	101A	Room	101B	Room	102	Room	111
[4 14:25-14:50 2 ((D:42 Design of Bi-Directional DC/ DC Converter System with Adjustable Current and Voltage Profile Dluwafemi OE ONi (University of Zululand)*, innocent E. Davidson (Cape Peninsula University of Technology); Ndivhuho Nathaniel Muronga (University of Zululand)	ID:63 Dynamic Deter Voltage Regulators F Monitoring Power FI Phase Unbalance TATSUKI OKUNO (Wa Akihisa Kaneko (Was Tujimoto (Waseda Un Hayashi (Waseda Un	Parameters by low and Three- aseda University)*; eda University); Yu niversity); Yasuhiro	ID:48 Coordinated c distributed thermos load for frequency r impact on voltage p Divine A Okeke (Skol Science and Technolo ibanez (Skolkovo inst Technology): Elena G institute of Science a Abdullatif Albaseer University); Mohame Bin Khalifa University	tatically controlled egulation and rofile of a microgrid kovo institute of kovo institute of Science and ryzaina (Skolkovo nd Technology); (Hamad Bin Khalifa d Abdallah (Hamad	ID:96 Imbalance and multiple battery-ele series Hwanil im (Loughbor Matthew Beatty (Lou University); Matthew (Loughborough Univ Ashton (Loughborou) Strickland (Loughbor	ctrolyser cells in ough University); ighborough / Brenton ersity); Elizabeth gh University); Dani
F 14:50-15:15 7 5 5 6 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		ELECTROCHROMIC EI DEVICES: APPLICATIO WINDOWS Firoz Khan (King Fahc Petroleum & Mineral Rasheidi (King Fahd L Petroleum & Mineral (Center of Research E Renewable Energy (C University of Petroleu M. Abdul Majid (King	roz Khan (King Fahd University of I etroleum & Minerals)*; Masoud Al- asheidi (King Fahd University of etroleum & Minerals); KASHiF iRSHAD		Bin Khalifa University) ID:57 Assessing the factors that drive effective decentralized mini-grids deployment in rural Ghana – A case study Kofi Nyarko (Murdoch University)*		ing of battery- irogen cooking and ns ughborough (Ashton srsity); Jonathan (h University); (hborough ckland arsity)*
(15:15-15:40 15:15-15:40		ased Protection and Dynamic State stimation For Power Systems With verter-based Resources ergio Turizo (Universidad de los Andes), AVID CELEITA (UNIVERSIDAD DE LA ABANA), Gustavo Ramos (Universidad		ID:72 Implementing a High-Frequency Digital SMPS with Microcontroller Hardware Accelerator Wenhao Lin (imperial College); GUANYING CHU (Xi'an Jiaotong-Liverpool University)*; Muyang Li (University of Liverpool); qinglei bu (Xi'an Jiaotong- Liverpool University)		ID:101 Grid-Connected Converter Test System with Single DC Power Supply Tsai-Fu Wu (National Tsing Hua University)? Yun-Hsiang Chang (National Tsing Hua University)? Jui-Yang Chiu (National Tsing Hua University); Chien- Chih Hung (National Tsing Hua University)	
/ s 15:40-16:05 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	D:390 Unlocking Energy Stability: An Approach to Managing Load Shedding in eThekwini Municipality by Leveraging the Potential of Battery Energy Storage Systems nnocent E. Davidson (Cape Peninsula University of Fechnology)*; Leshan Moodliar (Cape Peninsula University of Fechnology)	Management In Foo Facilities Through Da DAVID CELEITA (UNIN SABANA), Ivan Rivera Rosario), Daniel Zorri Rosario), Juan Martír	ACUITIES INFOUGN DATA ANAIYSIS IAVID CELEITA (UNIVERSIDAD DE LA ABANA), Ivan Rivera (Universidad del osario) Daniel Zorrilla (Universidad del		ing Current for Ige System	ID:102 Effect of Surf Sliding of Adhered Ryo SUZUKi (Kumam Yuchao LiU (Kumam NAKASHiMA (Kuman Yoshitaka NAKANISH University)	Snow and Ice oto university)*; oto University); Yuta noto University);
м и 16:05-16:30 и и и и и и и и и и и и и и и и и и и	D:391 In-orbit Performance Evaluation of the MDSast-1 CubeSat Power System nnocent E: Davidson (Cape Peninsula University of Technology)*, Smannandla Magina (Cape Peninsula University of Technology); Ulile N ecohology), Yayneeko Royi (Cape Peninsula University of Technology); Avodele Peninsula University of Technology); Avodele Peninsula Supta (Cape Peninsula University of Technology); Balyan Vipin (Cape Peninsula Iniversity of Technology); Janvier Kannani (Cape Peninsula University of Technology); Janvier	D:95 Battery-electrolyser low-pressure management system reddie Wollen (Loughborough Jniversity); Richard Wilson Loughborough University); Elizabeth Sahton (Loughborough University); Paul Holland (Loughborough University); onathan Wilson (Loughborough Jniversity); Dani Strickland Loughborough University)*		ID:94 Economic Viability of a Battery- electrolyser System for Frequency Response and Hydrogen Production Callum Reed (Loughborough University); Elizabeth Ashton (Loughborough University); Dani Strickland (Loughborough University)*		ID:269 Assessment of large-scale solar photovoltaic potential on building roofs and facades using geo-aware graph attention networks Zheng Li (The university of Hong Kong); jun ma (HKU)*	
16:30-16:55		ID:394 Energy and La Smart Fishery At Coa Kazuhiko MATSUOKA of Applied Science)	ast	ID:179 Challenges Toward Commercializing Tidal Power Technology Outcomes and Prospects from Japan's First Large-Scale Demonstration Project Katsuhiro Henzan (Kyuden Mirai Energy Company, incorporated)*; Toshihiko Furue (Kyuden Mirai Energy Company, incorporated)		ID:105 Novel Model Capacitance for Gate Optimization Seiya Abe (Kyushu in Technology); Gen ish institute of Technolo (Omron Corporation) (Omron Corporation) (Omron Corporation)	: Driver stitute of ibashi (Kyushu gy)*; Hiroki ishibashi ; Noriyuki Nosaka ; Takeshi Uematsu
·							

	Date: November 13	3, 2024	
		ONS SESSION 33 CHAIRS: Youssef JO	JANE, Yi-Syuan Wu
Room	110	Room	112
14:25-14:50	ID:347 Enhancing Power Efficiency by Integrating Processor Performance Metrics with Power Supply Phase Control Shinichi Kawaguchi (Kanagawa institute of Technology)*	ID:127 LVDC Sourced LED Drivers Using Ga Transistors Satoshi ikeda (Panass Natsuki (Panasonic ir Kimihiro Nishijima (S	IN Power onic)*; Maeda idustry Co., Ltd.);
14:50-15:15	ID:401 Unbalanced Three-phase Flying-capacitor Converter for Current Ripple Reduction Keisuke Kusaka (Nagaoka University of Technology); Shinjiro Shimura (Nagaoka University of Technology)*	ID:129 Feasible Sub- Enumeration and Co Approach for Loss N Locally PV-Dense Dis Erina Sato (Waseda L	mbination linimization in tribution Networks
15:15-15:40	ID:361 Development of Sinusoidal Converter and Inverter with Active LC Filter by Optimal Voltage Control Based on IRM-ILQ Control Method Hiroshi Takami (Shibaura institute of Technology)*	ID:19 Efficient Greer Production From Wi System Design Persy Optimal Operating F Alkaline Electrolyzer Lisa Marie Dannappe University of Denmaı (Norwegian Universii Technology), Yi Zong University of Denmaı Jäschke (Norwegian I and Technology)	nd Power: A bective Regarding ressure For s I (Technical rk), Lucas Cammann y of Science and (Technical rk), Johannes
15:40-16:05	ID:353 Estimating the Switching Lifetime of GaN HEMT under Soft- Switching Operation HIROKAZU OKI (ROHM)*; HIROSHI YAMASHITA (ROHM); TOSHIYUKI ZAITSU (ROHM); WARNAKULASOORIYA THIYU (Nagoya University); SIHOON CHOI (Nagoya University); YU YONEZAWA (Nagoya University)	ID:144 Evaluation of Uncertainty on Reac Reduction through F Adjustment of PV Sy Voltage Distribution Satoru Akagi (Tokyo Company Holdings, in Kaburagi (Tokyo Elec Holdings, inc.); Kazur Electric Power Comp Kazuki Okumura (TEF incorporated); Ryo M Grid, incorporated)	tive Power ixed Power Factor stems in Medium- Network Electric Power nc.)*; Sayaka tric Power Company iari ishibashi (Tokyo any Holdings, inc.); 'CO Power Grid,
16:05-16:30	ID:205 A Novel Estimation Method for Equivalent Series Resistance of Film Capacitors Considering Frequency Characteristics Yusuke Sawada (Nagoya University);*; Sihoon Choi (Nagoya University); Tun imaoka (Nagoya University); MASAYOSHi YAMAMOTO (Nagoya University); Toshiumi Tatsuki (Toray industries, inc.); Masatoshi Ohkura (Toray industries, inc.)	ID:257 Design and Li control of a GaN bas Full Bridge Converte Selim Bayram (Gazi L Roketsan); Korhan KJ University)*; Abdelfa Mohamed Bechar Ur	ed Phase Shifted r Iniversity, AYISLI (Gazi tah Nasri (Tahri
16:30-16:55		ID:23 The role and b residential photovol rooftops and contrik energy transition. G Daniel Icaza (Catholic Cuenca, Cuenca, Ecu González Ladrón de C Politècnica de Valènc	taic prosumers on oution towards the alapagos case study c University of ador)* Fernando Guevara (Universitat
16:55-17:30		MONY (Room:10	2)

	Date: November 11	1, 2024 13:30-15:00	:30-15:00
	POSTER SESSION PS1	at Event-F	Event-Exhibition Hall
PS1-1	1 D:46 Impact of key technological parameters on sulffur production processes Batyr: Orazbayev (LMGumilyov Eurasian National University): Ainur Zhumdillayeva (LNGumilyov Eurasian national universit)*; Kulman Orazbayeva (LNGumilyov Eurasian national universit): Nazgul Kurbangalieva (LNGumilyov Eurasian national universit)	PS1-13	ID:148 PV Power Generation System Recently Installed on Railway Station Platforms Junichi Obama (East Japan Railway Company)*: Masayo Hatae (East Japan Railway Company): Ushio Otogawa (East Japan Railway Company)
PS1-2	1D:83 Hybrid Ranewable Energy Systems and Their Optimization for Remote Community Applications Kuanrong Qiu (CanmetEnergy-Ottawa)*	PS1-14	10:167 Design of Phase-Shifted Full-Bridge DC-DC Converter for Micro EV Keisuke Tokuyasu (Aisam industy Co., Ltd.)*; Kazuhiro Kajiwara (Nagasaki institute of Applied Science); Yudai Furukawa (Nagasaki institute of Applied Science); Hideo Fukumoni (Aisan industy Co., Ltd.); Fujio Kurokawa (Nagasaki institute of Applied Science)
PS1-3	1D:91 Optimal Planning of Water-Energy Nexus on DC Island Microgrid with RESs Gingüe Le (University of MacaUX: Hongrai Zhang (The State Key Laboratory of internet of Things for Smart City and the Department of Electrical and Computer Engineering, University of Macau, Macao, 999078 China.)	PS1-15	1 D:168 A Common-Signal Driven Split Output Gate Driver for SI/SiC Hybrid Switches to Realize Zero-Voltage Switching Yohei Nakamura (ROHM Co., Ltd.)*; Atsushi Yamaguchi (ROHM Co., Ltd.); Junichi Kashiwagi (ROHM Co., Ltd.); Ken Nakahara (ROHM Co., Ltd.)
PS1-4	ID:117 Artificial Neural Network-based Grid Impedance Identification Method of Grid-connected Converter with Grid- fellowing and Grid-forming Control Yuan Qiu (Aaborg University): Yanbo Wang (Aalborg University)*: Zhe Chen (Aalborg university)	PS1-16	1D:168 Continuous Operation of QFM Inverter with Carrier Frequency Reduction and One-Pulae Modulation Under Overourrent Condition Ryota Nakanami (Nagaoka University of Technology)≭: Yushi Miura (Nagaoka University of Technology): Yoshinobu Ueda (Meidensya Corp): Toshiya inoue (Meidensya Corp)
PS1-5	ID:128 Using Vector Space Decomposition for Inter-Turn Short Circuit Modelling and Classification in a Nine-Phase Permanent Magnet Synchronous Machine Michael Ebnicher (Technical University of Munich)¥; Michael Mangels (Technical University of Munich); Ozan AktUk (Technische Universität MUnchen); JOrg Kammermann (Technische Universität MUnchen); Hans-Georg Herzog (Technische Universität MUnchen)	PS1-17	10:117 Electric Power Control of a Heat Generation System using a Rotating Heater Hiroki Satio Nagaoka University of Technology)*: Yushi Mura (Nagaoka University of Technology): Satoshi imamori (Fuji Electric Co., Ltd.); Hideki Ohguchi (Tokai University): Toru Okazaki (The institute of Applied Energy)
PS1.6	1D:136 Field-Oriented-Control of a Reduced Order Model of a Nine-Phase PMSM in Healthy and Faulty Case Michael Mangels (Technical University of Munich), Michael Ebriotier (Technical University of Munich), Thomas Egerbacher, Jörg Karmermann (Technical University of Munich), Hans-Georg Herzog (Technical University of Munich)	PS1-18	1D:135 Bidirectional Charging Systems in Industrial DC Microgrids – Outlook and Modeling Lucas E Marra de Lima (Fraunhofer-institut für Produktionstechnik und Automatisierung iPA)*; Janosch Christian Hecker (Fraunhofer institute for Manufacturing Engineering and Automation)
PS1-7	ID:156 Disturbance Observer-based Voltage Control of Parallel Inverters for Photovoltaic without Parallel Operation Signal Line Line Line Line And National institute of Technology, Akita College)×: Keigo Takahashi (National institute of Technology, Akita Colege); KiYOSHi OHiSHi (Nagaoka University of Technology): Toshimasa Miyazaki (Nagaoka University of Technology); Koichi Kitamura (Niigata Electronics Corporation); Takayuki Shimizu (Niigata Electronics Corporation)	PS1-19	1D:351 Estimated Energy Balance for Shuttle Service of Nursing Home-Collaborated Hospital Assuming EVs Koki Kumaoka (Osaka Ebetro-Communication University): Tomoya inagata (Nagasaki institute of Applied Science): Nobumasa Matsui (Nagasaki institute of Applied Science): Choi Jiyoung (Nagasaki institute of Applied Science): Fujio Kunokawa (Nagasaki institute of Applied Science): Choi Jiyoung (Nagasaki Mizuno (Osaka Electro-Communication University)*
PS1-8	ID:166 Database construction and its method of building materials for coexistence study of beam type wireless power transfer systems ashin: Hanzawa (Taisei Corporation)*: Sonshu Sakihara (Taisei Corporation); Koji Yamaguchi (Taisei Corporation); Tetsuo Endo (Taisei Corporation); Yuki Masuko (Aoyama Gakuin University); Ryosuke Suga (Aoyama Gakuin University); Osamu Hashimoto (Aoyama Gakuin University);	PS1-20	10:199 Evaluation of Monopolar Fault-Tolerant Operation Capability of Multi-Active-Bridge Convertors in Bipolar DO Systems Yijia Chen (Shanghai Jiao Tong University): ma jianjun (Shanghai Jiao Tong University): Miao Zhu (Shanghai Jiao Tong University): Zhengmei Lu (Shanghai Jiao Tong University)
PS1-9	1D:181 Grid Voltage Control of Energy Storage System using Dual Active Bridge Converter Kazuaki Miyamoto (Nagasaki University): Shin-ichi Hamasaki (Nagasaki University)*; Tetsuji Daido (Nagasaki University)	PS1-21	ID:147 Pseudo-Derivative-Feedback Control of Grid-Connected Invorters Hao-Fu Lee (National Kaohsung University of Science and Technology)#. Jun-Yu Zhan (National Kaohsung University of Science and Technology): Yu-Xiang Lin (National Kaohsung University of Science and Technology); KUOYUAN LO (National Kaohsiung University of Science and Technology)
PS1-10	1D:188 Impact of Grid Faults on Grid-Following Converter Controller Operation and Phase Instability Yeuntae Yoo (Myongii University)*: inChan Hong (Myongii University)	PS1-22	10:215 A Synergic AC-DC-DC Energy Storage System Applying Totem Pole Circuitry Scheme with Inrush Current Limiting Based on SIC MOSFET Spirito Effect and PSFB Converter with Non-uniform Air Gap Inductor Tim Chen (Potens semiconductor corp.)*
PS1-11	1D:204 Position Sensoriess Control of Switched Reluctance Generator using State Observer Yoshihiro Nakazawa (Kanagawa University)#: Yoshiaki Shinoda (Kanagawa University); Hirotsugu Kinoshita (Kanagawa University)	PS1-23	ID:338 Bidirectional DC-DC Converter Based on Degradation Characteristics of GaN FET Kazuhiro Kajwara (Nagasaki institute of Applied Science)+: Toshifumi Konishi (NTT Adonneed Technology Corporation); Toriur Kodaira (NTT Advancet Technology Corporation); Roshifawa (NTT Advanced Technology Corporation); Kazuhiro Takahashi (NTT Advanced Technology Corporation); Yoshihava Akiyama (NTT Advanced Technology Corporation); Kazuhiro Takahashi (NTT Advanced Technology Corporation); Yoshihava Akiyama (NTT Advanced Technology Corporation); Nobumasa Matsui (Nagasaki institute of Applied Science); Kurokawa (Nagasaki institute of Applied Science)
PS1-12	1 D:206 Transient Stability Data Driven Special Protection Scheme using Deep Reinforcement Learning Yoongun Jung (Korea Univ)#: Seokjun Kang (Korea Univ); Kwarapiyun Kim (Korea Univ); Hyeen Woo (Korea Univ); Sungyoon Song (Tech University of Korea); Minhan Yoon (Kwangwoon Univ); Sungyun Choi (Korea Univ); Gilsoo Jang (Korea Univ); Sungyoon Song (Tech		

	Date: November 12, 2024 13:30-15:00	2024 1	3:30-15:00
		L	
	POSTER SESSION PS2 8	at Event	Event-Exhibition Hall
PS2-1	ID: 210 Experimental Validation of the Simulation Scheme Estimating the Freewheeling Transistor Surge Voltage During the Switching-Side One Turn-on Transient in a Half-Bridge Circuit Toshikazu Harada (ROHM Co., Ltd.)*, Tatsuya Miyazaki (ROHM Co., Ltd.); Yuta Okawauchi (ROHM Co., Ltd.); Ryosuke ishido (ROHM Co., Ltd.); Ken Nakahara (ROHM Co., Ltd.)	PS2-14	10 435 Method for Estimating Power Losses in Low-Voltage Networks Stanimir Valtchev (FCT/UNL)*, Rosario Miceli (University of Palermo); Almaz Petrov (Kazan State Power Engineering University); Elena Gracheva (Kazan State Power Engineering University); ilhami Colak (Istinye University); Fujio Kurokawa (Nagasaki institute of Applied Science)
PS2-2	ID:222 Optimization of Substation Transformer Tap Adjustment Control Using Digital Twin Database Byeong Chang Lim (Myongji University); Yeuntae Yoo (Myongji University)*	PS2-15	ID 216 Extracting an experimental formulation for power loss prediction in a laboratory-scale grid-forming converter Kazem Pourhossein (Helmut Schmidt University)*, Edgar Diego Gome z Anccas (Helmut Schmidt University); Detlef Schulz (Helmut Schmidt University)
PS2-3	ID:268 Phase-Shifted Full-Bridge Converter with High Efficiency HANBIN KiM (le onbuk National University)*	PS2-16	10.221 High boost-ratio multi-source inverter based on sinusoidally modulated floating-output series-interleaved GaN converter Tenshin Kamahara (Kindai University)*-Hinano Ushiba (Kindai University); Masataka Minami (Kindai University); Alberto Castellazzi (Kyoto University of Advanced Science)
PS2-4	ID:288F sat-Responding and Flexible Energy Storage Systems for Renewable Integration: Challenges and Opportunities Alperen Mustafa Colak (TMEIC)*	PS2-17	ID 224 Cure nt Limiting Vector Control for Pulse-Load Power Supply Uxian Zhang (Shanghal Jiao Tong University); ma jianjun (Shanghai Jiao Tong University); Miao Zhu (Shanghai Jiao Tong University)*; Shuli Wen (Shanghai Jiao Tong University)
PS2-5	ID:294 Reinforcement Leaming-Based HVAC Syste m Operation Under Limited Data Acquisition Ye-Eun Jang (Electronics and Telecommunications Research (ETRI))*, Wan-Ki Park (Electronics and Telecommunications Research (ETRI))	PS2-18	1D.2.28 Efficient integration of industrial sector coupling systems in DC distribution grids Janosch Christian Hecker (Fraunhofer institute for Manufacturing Engineering and Automation)*
PS2-6	10:302 Impact of Demand-Solar Irradiance Correlation on the Optimal Sizing of ESS for PV Generators Se ungyeop Baek (Myongii University); Ye untae Yoo (Myongii University)*	PS2-19	1D.2.42 Suitability of a Permanent Magnet Synchronous Generator with Magnetic Gear for Wind Power Generation Daniel Fodorean (Technical University of Cluj-Napoca)*, claudia violeta pop (Technical University of Cluj Napoca)
PS2-7	ID:307 A 2LLC21 Filter Design and Optimization for Grid-Comected Solar PV Inverters Adel Nasin (University of South Carolina)*; Mohammad Vafadar (University of South Carolina); Hossein Vafadar (islamic Azad university Jouybar branch)	PS2-20	1D:1313elf-Excited 5ynchronous Machines used for 5mall Wind Power Applications Daniel Fodorean (Technical University of Cluj-Napoca)*
PS2-8	ID:313 Core. Loss Measurement. Me thod for Magnetic Materials Using Boost Converter hy eon jung, kim (Jeonbuk National University)*	PS2-21	10.2.72 Steady State Characteristics of Push-Pull Converter with Asymmetric Operation for Wide input Voltage Range Atsushi Fujii (Kyushu institute of Technology)*; Seiya Abe (Kyushu institute of Technology)
PS2-9	ID:335 A Soft-Switching Modular Three-Phase Dynamic Voltage festorer with Fictitious DC-Link Maoh Chin Jiang (National ilan University)*,Ya-Chi Chien (National Ilan University); Rong Jun Ma (National ilan University)	PS2-22	ID:146 Interleave 1 Totem-Pole PFC Converter with ZVS Switching HSUAN-YI HUANG (National Kaohsiung University of Science and Technology) *; KUOYUAN LO (National Kaohsiung University of Science and Technology)
PS2-10	ID:155 A hydrogen-driven technology mapping for future energy systems Salyam Marahatta (University of South-Eastern Norway); Amir Safari (University of Southeast Norway (USN))*	PS2-23	1D:52 Developing An Meal Model For Electric Vehicle Charging Station Locations Jaewon Kang (Kyushu University)
PS2-11	ID-432 Assessment of Reliability Indicators of Power Supply Systems with Two-Transformer Substations During Technical and Economic Calculations Statimic/Valchev (FCT/JUNU)*, Rosario Miceli (University of Palermo); Renata Petrova (Kazan State Power Engineering University); Elena Garaceva (Kazan State Power Engineering University); Ithami Colak (Istinye University); Fujio Kurokawa (Nagasaki institute of Applied Science)	PS2-24	10:122 Enhancing Floating Wind Turbine Reliability with Shared Mooring Damping Haonan Tian (Haonan Tian, Aalborg University)
PS2-12	ID-433 Assessment of Reliability Indicators of In-Plant Power Supply Systems with Two-Transformer Substations Stanimir Valtchev (FCT/UNU)*, Rosario Miceli (University of Palermo); Renata Petrova (Kazan State Power Engineering University); Elena Grachieva (Kazan State Energy University); ilhami Colak (Istinye University); Fujio Kurokawa (Nagasaki institute of Applied Science)	PS2-25	1D:301 DC Microgrid Reliability Enhance ment with Adaptive Converter Thermal Management Xiangchen Zhu (Aalborg university)**Pengviang Huang (National Renewable Energy Laboratony): Yanbo Wang (Aalborg University): Hanwen Zhang (Aalborg university); Ruizhi Wei (University of Alberta); Yunwei(Ryan) Li (University of Alberta); Zhe Chen (Aalborg university)
PS2-13	ID-434 Investigation of Cable Line He at Mode Parameters in Power Supply Systems Stanimir Valtchev (FCT/UNL)*; Rosario Miceli (University of Palermo); Elena Gradreva (Kazan State Power Engineering University); Almaz Petrov (Kazan State Power Engineering University); Ivan Tsitson (Kazan State Power Engineering University); Ilhami Colak (Istinye University)		

Exhibition layout

Sponsor Companies

	Diamond Sponsors
1	KYOCERA Corporation
2	Paycle Inc. & UPCX-Platforms PTE. LTD.
3	NTT Advanced Technology Corporation
4	TMEIC Corporation
5	NTT DOCOMO, INC.
	Gold Sponsors
6	Kyowakiden Industry Co., Ltd
7	NICHICON CORPORATION
8	Fudo-Giken Industry Co., Ltd & PAL Corporation
9	DENSO TEN Limited
	Bronze Sponsors
10	Shindengen Electric Manufacturing Co., Ltd.
11	Yokogawa Test & Measurement Corporation
12	Modelcore laboratories LTD.
13	Smart Energy Laboratory Co, Ltd.
14	NTT Devices Cross Technologies Corporation
15	D-Solution Co., Ltd.
16	Plexim GmbH
17	EAST JAPAN RAILWAY COMPANY (JR-East)
18	ROHM Co., Ltd.
19	Potens Semiconductor Corp.
20	Nuvoton Technology Corporation Japan
21	ISAHAYA ELECTRONICS CORPORATION & ICOC
22	Kanadevia Corporation
23	TAISEI CORPORATION
24	Kyuden Mirai Energy Co.
25	Hitachi, Ltd.
26	
	Exhibitor
27	NITTOKU CO., LTD.
28	Mitsui O.S.K. Lines, Ltd.
29	QTnet, Inc.

Sponsor Exhibitor List

No.	Sponsor Company	Exhibition No.	Class
1	KYOCERA Corporation	D-1	Diamond
Since Kyocera was founded in 1959, we have grown our business based on the Management Rationale developed by our founder, Dr. Kazuo Inamori: "To provide opportunities for the material and intellectual growth of all our employees, and through our joint efforts, contribute to the advancement of society and humankind."			
Changes in societal and economic structures are progressing rapidly, on a larger scale, and based on new perspectives, unlike anything we have seen before. As a result, we expect many new business opportunities, but as a truly global company, we also have a responsibility to tackle a broad range of issues facing society.			

For the Kyocera Group to contribute to society, continuously improve our corporate value, and uphold our Management Rationale, we believe it is necessary to continue taking on new challenges rather than being bound by traditional ways of thinking.

With a sense of urgency in response to our changing times, we aim to enhance Kyocera's corporate value and achieve a sustainable society by applying all of our technological capabilities and management resources, and by helping every employee reach their full potential.

2	Paycle Inc. & UPCX-Platforms PTE. LTD.	D-2	Diamond

Paycle Inc. is engaged in blockchain, fintech, AI, and quantum-resistant cryptography research. We aim to combine these technologies to provide sustainable services addressing environmental and economic challenges. We maximize this knowledge, technology, and experience to contribute to a more robust global economy through secure and efficient environmentally sound solutions. We strive to bridge the gap between technological development and environmental protection to deliver long-term value for businesses and society.

UPCX-Platforms PTE. LTD. has a mission to provide payment systems that meet the evolving needs of society, making transactions more enjoyable and exciting. To this end, we are developing "UPCX," an open-source payment system that leverages high-speed blockchain technology.

UPCX achieves performance and scalability comparable to credit cards and mobile payments, enabling quick transactions. By delivering a user experience that is on par with existing payment solutions, users can utilize blockchain technology unconsciously. Based on such blockchain and applications that offer high-speed transactions and user experiences at the level of existing financial systems, a diverse ecosystem is formed, providing a payment system that anyone can easily use.

Furthermore, UPCX-Platforms PTE. LTD. will develop a high-performance blockchain to process vast amounts of information belonging to an unspecified large number of users, originating from IoT and sensing devices, leveraging the experience and knowledge accumulated during the development of UPCX. When you handle such massive data, it is necessary to improve software aspects like algorithms and explore eco-friendly methods suitable for the coming era in infrastructure development, such as reducing power consumption.

UPCX-Platforms PTE. LTD. intends to engage in various initiatives, including developing advanced data processing methods that combine both software and hardware aspects, by collaborating not only within our company but also with prominent external partners.

3	NTT Advanced Technology Corporation	D-3	Diamond
	\mathbf{A}	والمعادة والارتجاء والمعالة	and the second s

NTT Advanced Technology Corporation continues to take on the challenge of creating new value to solve your various issues.

Here we would like to introduce you following our several solutions related to renewable energy and energy harvesting.

These solutions are expected to contribute carbon neutrality.

a. SQPV (Solar Quartz Photovoltaic) glass

SQPV glass is one of a future glass allows light to pass through and generates electricity. Thermal barrier effect is also expected.

b. Energy management system in a specific area (ENEPILOT)

 ENEPILOT aggregates renewable energy resources and energy storage operated in specific areas such as municipalities, and contributes to local production for local consumption of energy by controlling the renewable energy resources to maximize their output power. Portable lithium-ion batteries are also used for an example of energy storage. c. Hydrogen fuel cell *reference exhibition An Alkaline Fuel Cell which is rugged, reliable, and resilient, leverages hydrogen to output 48 V direct current power of long-duration, zero-emission. 					
4	TMEIC Corporation	D-4	Diamond		
introdu In ad informa to gen neutral In ad system At our b	The main theme of TMEIC's exhibition booth is "Sunlight and Hydrogen," and it introduces new carbon-neutral initiatives. In addition to dioramas, videos, and panel displays, the booth is also full of interesting information, including green hydrogen, a carbon-neutral initiative that uses solar power to generate hydrogen, unusual gravity and microbial energy storage, carbon-neutralization of port-related facilities, and an electric propulsion ship. In addition, panels about the motors and drive devices that are the basis of these systems are also on display. At our booth, we have created a carbon-neutral town using Lego blocks, and our TMEIC man is waiting for you at the front of the booth.				
5	NTT DOCOMO, INC.	D-6	Diamond		
NTT DOCOMO Group (DOCOMO Group) announced its "Net-Zero by 2040" plan for achieving Net-Zero carbon emissions across the company's entire supply chain by 2040. The plan builds on DOCOMO Group's existing 2030 Carbon Neutrality Declaration, which commits the company to effectively reducing greenhouse gas emissions from its business operations to Net-Zero by 2030. NTT DOCOMO, INC. (DOCOMO) has been developing DOCOMO Energy Management System (DOCOMO EMS) to achieve Net-Zero. DOCOMO constructs green base stations with solar panels to reduce greenhouse gas emissions from base stations, which account for about 70% of its total power					
consumption. DOCOMO EMS controls batteries to use renewable energy effectively. Also, DOCOMO implements Demand Response (DR) with batteries installed in base stations and DOCOMO shops for disaster use. DOCOMO EMS controls batteries optimally to meet the DR amount required from utilities. DOCOMO conducts battery management for schools, applying the above technology outside the company. DOCOMO EMS monitors the batteries to ensure their use in					
outside the company. DOCOMO EMS monitors the batteries to ensure their use in disasters and control them to reduce electricity cost. DOCOMO tries to apply its power monitoring and control technology to households as well. It is developing algorithms to reduce household electricity cost through scheduled operation of electric vehicles, storage batteries, and appliances in price-based DR, which sets flexible electricity usage charges depending on market demands. Also, DOCOMO studies how to encourage users to save power, using an agent that analyzes their lifestyle data and offering tailored energy-saving tips easy to execute.					
past po	DOCOMO predicts power demand to manage energy considering the future. It uses past power demand data, weather condition data, and human flow data based on location information acquired from smartphones.				
	OMO thus aims to realize optimal energy r dating energy resources within and outside th				

6	Kyowakiden Industry Co., Ltd	G-1	Gold	
Title: "Nanostep®, Real-Time Simulation for SiC/GaN Devices with 1.5 MHz Switching Frequency." The high switching frequencies of converters with GaN and SiC components pose a challenge for real-time simulators used for hardware-in-the-loop testing of control systems. To overcome this issue, Plexim has developed Nanostep®. The new Nanostep® solver enables real-time simulations on the RT Box with step sizes as low as 4ns, making it the perfect technology for WBG converters.				
7	NICHICON CORPORATION	G-2	Gold	
8 Deliv	Fudo-Giken Industry Co., Ltd & PAL Corporation vering a sustainable future from Nagasaki, we	G-3	Gold	
 wind-power generation. Fudo-giken industry can respond to various needs with XR technology. iNADA WIND: used for DX of Operation and Maintenance iNADA WIND is maintenance optimization system for wind turbine, in this system the inspection is done on the smartphone and a report is prepared automatically. Scenery Simulator: Simulate a Wind Farm Scene using VR and AR Technology The scene of wind farm is easily changed by view point, time, season, weather and layout of wind turbine. Chokai: Blade defect Detection Technology using Acoustic Signals This technology is focusing on the 1N component of time-frequency analysis of acoustic signal. And the technology is implemented to smartphone. Blade defect is detected by just two taps. Pal corporation can provide the services of structural design and analysis for various structures as structural consulting engineers. And for spread of renewable energy we have engaged in the services of wind condition analysis of tower and foundation. Based on these experiences and development of technologies, we provide the following services for supporting the construction of wind power generation facilities. We try to optimize the tower and foundation for reduction of the construction costs. The wind resource is calculated and the best site of wind power generation facility is selected by analysis and measurement of wind speeds and directions. In addition, we provide the services of environmental impact assessments such as noise level and shadow flicker, and obtaining Wind Farm Certification. 				
9	DENSO TEN Limited	G-4	Gold	
DENSO TEN is a global comprehensive car electronics manufacturer. Up until now, we have been involved in products that improve the value of cars, such as car navigation systems, drive recorders, and electronic control units for hybrid systems. Currently, we are expanding our business in two areas: the "HMI Solution Business" and the "Electronics and Electrification Business." In the HMI Solution Business, we aim to achieve a human-friendly HMI optimized for each individual by utilizing in-vehicle				
edge AI and information communication technology to analyze the driver's condition and the surrounding environment of the vehicle. Furthermore, by collaborating with				

advanced driver assistance systems (ADAS), we contribute to maximizing the safety, comfort, and excitement of drivers and passengers.

Next is the Electronics and Electrification Business. For next-generation vehicles, we provide core products (ECUs) utilizing control system technology, aiming to contribute to the realization of carbon neutrality and safe, secure mobility.

Through our in-vehicle electronic devices and services that are friendly to people and the environment, DENSO TEN contributes to society in the areas of "environment" and "security" We continue to challenge ourselves towards the realization of a carbonneutral society and a society where everyone can enjoy safe and secure mobility without traffic accidents.

During the conference period, we will be exhibiting in-vehicle multimedia devices, in-vehicle sound system, home audio systems, and more.

10	Shindengen Electric Manufacturing Co., Ltd.	B-11	Bronze
----	--	------	--------

Shindengen will showcase our newly developed Bidirectional Power Conditioner for V2G: EVS010T200A in upcoming ICRERA. This product can supply power from EVs to three-phase loads.

Shindengen is one of the few manufacturers making all three core technologies necessary for power supplies: power semiconductor manufacturing, circuit design technology, and system mounting technology for in-vehicle electrical components, and other products. These core technologies combine to streamline and optimize the entire power supply manufacturing process, making Shindengen unparalleled in the industry.

Shindengen's 14 domestic and 16 international bases make us a truly global company, with overseas sales accounting for more than 60% of total sales. We boast the world's top share of the regulator market for motorcycles, which is mainly popular in Asia. We also have a top share of bridge diodes, one of the most-used power semiconductors in home appliances.

Throughout our history, we have listened closely to our customers, tried to foresee what's coming in society, and played a significant role in cultivating expertise in our field. This has always been the spirit of our company. Today and tomorrow, we will continue striving to integrate leading technology and our extensive experience into our company spirit so that we can deliver optimum value.

By rising to the challenge of realizing ever greater energy efficiency, we will help protect the natural environment. Through ever better products and systems, we will contribute to the growth of society and create a future that solves problems and benefits people.

True innovation happens when the power supplies become smaller and lighter, improving power conversion efficiency and reducing the environmental impact in the process. The sooner we innovate power supplies, the sooner we realize the dream products of the future.

	Yokogawa Test & Measurement Corporation	B-12	Bronze
--	--	------	--------

Yokogawa Test & Measurement is committed to the development and manufacturing of high-precision measuring instruments for accurately measuring power conversion efficiency in the generation, transmission, distribution, and storage of electrical energy, as well as for monitoring the behavior of power conversion devices. These efforts are aimed at contributing to the realization of a sustainable society. In the field of renewable energy, improving the efficiency of inverters that convert DC to AC while minimizing power loss is crucial.

We will exhibit the DLM5000HD high-resolution oscilloscope to evaluate whether inverters are switching at the correct timing. This model features 8-channel input and 12-bit high resolution in a single unit. If needed, the number of channels can be expanded by precisely synchronizing two units.

To contribute to improving power conversion efficiency through precise power measurement, we will also exhibit the WT5000, a 7-channel input high-precision power analyzer that achieves world-class measurement accuracy. It allows for the easy connection of current sensors for measuring large currents with a single dedicated cable. Additionally, the WT5000 can continuously output waveform data input to the device to a PC at up to 2MS/s.

The DL950 ScopeCorder, an integrated measuring instrument, captures and records large voltages from low to 1000V, drive currents, rotation angles, vibration, strain, and temperature simultaneously. It is optimal for multi-channel measurements and capturing transient phenomena in motors and inverters that were previously difficult to observe.

By combining the WT5000, the DL950, and the IS8000 software, it is possible to precisely synchronize and display reliable power measurement values, high-speed voltage/current waveforms, and motor torque waveforms as integrated measurement data, enabling comprehensive analysis.

Yokogawa Test & Measurement serves as a bridge to a better future through advanced measurement technologies, supporting the realization of a sustainable society from the perspective of measurement as an essential infrastructure.

12	Modelcore laboratories LTD.	B-13	Bronze
Modelcore Laboratories solves power electronics problems using modeling technology. We provide detailed modeling and analysis of power circuits using SPICE (LTspice, Qspice), control design using the MATLAB/Simulink and software implementation using model-based technology, and analysis using the Scideam and the PLECS. At the exhibition booth, The totem-pole PFC model-based development kit and noise analysis by the Scideam will be demonstrated. Please feel free to stop by our booth.			
13	Smart Energy Laboratory Co,.Ltd.	B-14	Bronze
Scid	eam is a Japanese high-speed circuit simulat	or specialized in po	wer generation

Scideam is a Japanese high-speed circuit simulator specialized in power generation and power electronics development. With over 30 years of experience in computational algorithms, along with a newly developed circuit editor and waveform viewer, Scideam offers a comfortable simulation environment. Scideam has been trusted by switching power supply manufacturers, power electronics manufacturers, home appliance manufacturers, and automobile manufacturers in Japan.

Key Features:

- Fast and Stable Analysis: Automatically resolves both analysis time and convergence issues.
- Loss Analysis: Fully automated and fast, capable of analyzing losses in any component.
- Motor Control: Achieve high-speed motor system simulations with Scideam.

At our booth, we will be demonstrating Scideam, including its free version, and showcasing our product lineup.

Experience the speed and stability of our advanced analysis firsthand!

14	NTT Devices Cross Technologies Corporation	B-15	Bronze
----	---	------	--------

NTT Device Cross Technology Corporation supports customers' manufacturing by synergizing optical communication device technology and ICT hardware technology.

- Design services for analog ASICs, high-speed signal boards, and energy management systems.
- Analysis and evaluation services that visualize before production to predict effects and improve quality by visualizing the actual product.
- Prototyping and mass production support services that quickly turn ideas into reality and extract issues.

Based on our extensive analysis and testing technologies, our specialized engineers provide total support for customers' product development to improve design reliability, reduce costs, and shorten development times.

In this exhibition, as an example of energy management system development, we will demonstrate a DC-DC power converter for a photovoltaic power generation and hydrogen production system that applies the model-based development method. The demonstration system consists of a pseudo solar cell power supply, a DC-DC power converter, and a diode load for a pseudo-water electrolysis cell. Our original DC-DC power conversion device is configured in parallel, and maintains high power conversion efficiency at all times by controlling the number of parallel operations of the DC-DC power conversion device according to the intensity of solar radiation as well as the maximum power point tracking (MPPT) operation of the solar cells.

Please see the system verification and optimization through model simulation, the operation of the DC-DC power converter in response to changes in solar cell output, and the actual operation of the water electrolysis cell to see changes in the amount of hydrogen produced. We will also introduce our other services.

We look forward to seeing you at our exhibition booth.

15 D-Solution Co., Ltd. B-16 Bronze		D-Solution Co., Ltd.	B-16	Bronze
-------------------------------------	--	----------------------	------	--------

We are D-sol. D-Sol is an IT and paper solutions company. The founder of D-sol is from Nagasaki Prefecture and we are really looking forward to participating in this event. This time, we would like to introduce two D-sol's carbon dioxide reduction proposals.

The first is a "plastic-free" proposal. We made a new file folder with paper without polypropylene. By replacing polypropylene with paper, CO2 will be significantly reduced. First of all, CO2 emissions in the process of manufacturing paper materials to files have been reduced to one-third. In addition, paper is a wooden product. Trees fix CO2 during their growth process. The material of the paper is pulp. The material of the pulp is wood. We can say that CO2 is reduced in the manufacturing process of paper materials.

As a result of the above process, CO2 emissions can be reduced in both the paper manufacturing process and the paper material manufacturing process.

These paper files are available in the market. If polypropylene files are replaced by paper files, it will have a huge effect on reducing CO2. We launched this product four years ago and have sold 2.3 million copies so far. The reduction of CO2 in production per piece is 85.8 (g-CO2). When calculated, it was reduced by 450 million (t-CO2).

The second is "Agricultural Initiatives." We aim for IT agriculture. Here, we evaluate CO2 positively as nutrient.

We are focusing on photosynthesis. Good photosynthesis improves the quality of crops.

In order to maximize the effect of plant photosynthesis, we monitor the plant environment in order to determine the amount and timing of CO2input.

Monitoring is carried out on "CO2 concentration, air temperature, soil temperature, humidity, underground moisture content, and crop growth status". Each is measured in real time and observed off-site.

Input CO2 in the right amount at the right time.

So far, we have cooperated in experiments at our farm in Nagasaki Prefecture. When CO2 was efficiently input, strawberry yields increased by 20%. It has been found that right CO2 input is effective for agriculture.

However, due to the environment of the Goto Islands, the ways to obtain CO2are limited.

Currently, the cheapest way is to burn oil. This method is classic and has a high environmental impact. However, technological advances allow for a variety of procurement methods. In the future, we will consider various methods such as combustion facilities in the island and methods for extracting CO2 with the newest technology.

We at D-sol use paper to reduce CO2 emission. In addition, CO2will be utilized in agriculture using IT.

Thank you very much.

16	Plexim GmbH	B-17	Bronze
----	-------------	------	--------

Title : "Nanostep®, Real-Time Simulation for SiC/GaN Devices with 1.5 MHz Switching Frequency."

The high switching frequencies of converters with GaN and SiC components pose a challenge for real-time simulators used for hardware-in-the-loop testing of control systems. To overcome this issue, Plexim has developed Nanostep®. The new Nanostep® solver enables real-time simulations on the RT Box with step sizes as low as 4ns, making it the perfect technology for WBG converters.

17	EAST JAPAN RAILWAY COMPANY (JR- East)	B-18	Bronze
----	--	------	--------

East Japan Railway Company (JR East), the largest railway company in Japan, has set a long-term environmental goal called "Zero Carbon Challenge 2050" in 2020. The goal is set at a 50% reduction in CO2 emissions by 2030 compared to 2013, and net zero CO2 emissions by 2050. While electric railways have environmental advantages, we think that railway companies need to make more efforts to contribute to decarbonized society, so we have set that goal. In ICRERA 2024, we will introduce about summary of "Zero Carbon Challenge 2050" in Poster and industry session, for example, including renewable energy such as windfarm and solar power plant, introducing energy saving rolling stock, energy saving driving, and so on. Furthermore, we also introduce about hydrogen hybrid train, called "HYBARI". Some of the railway company in Japan are also interested in using hydrogen as environmental measures, and "HYBARI" is one of main measure related to hydrogen.

There is one more highlight this year. TAKANAWA GATEWAY CITY will partially open in March 2025. Takanawa gateway station is located in center of the city, so the city and the station are so closely related. TAKANAWA GATEWAY CITY will conduct various demonstrations and experiments to create innovations that solve social and environmental issues with the aim of creating a spiritually rich lifestyle 100 years from now. In ICRERA 2024, we will also introduce about "TAKANAWA GATEWAY CITY" focused on summary of city and environmental measures by poster and industry session. Please let it know and we hope to see you in Nagasaki, thank you.

18	ROHM Co., Ltd.	B-21	Bronze
	INA is a magnification of appricable to	and the state of t	

ROHM is a manufacturer of semiconductors and electronic components headquartered in Kyoto, a city of traditional culture. Through its global development and sales network, ROHM supplies LSIs, power devices, discrete devices, and other electronic components.

We have always put quality first and have always strived to contribute to the advancement of culture through a consistent supply, under all circumstances, of highquality products in large volumes to the global market. Based on this philosophy, we have refined our electronics technology with an indefatigable spirit of challenge.

ROHM was founded in 1958 as a manufacturer of small resistor products, entered the semiconductor business in 1967, and became the first Japanese company to establish a presence in Silicon Valley in 1971. In 2000, ROHM began research and development of SiC, and in 2010, became the firstest company in the world to begin mass production of SiC products. With a frontier spirit that does not fear failure and solid technical capabilities, ROHM has produced a series of products that lead the industries and has grown into a comprehensive semiconductor manufacturer.

Today's society faces various social issues. ROHM is also placing importance on activities that lead to the resolution of social issues. Especially now, with the urgent issue of realizing a carbon neutral society, expectations are rising for ROHM's semiconductors and electronic components. ROHM supports innovative manufacturing with an Integrated Device Manufacturing system (IDM) that manages everything from material procurement to assembly and packaging within the group companies, accelerating the pursuit of energy saving, miniaturization, and safety and security. These activities contribute to solving issues for society and our customers.

ROHM's technology and manufacturing continues to evolve even today, based on the company name ROHM, which combines the company's founding product, resistor (R), and its unit Ω (ohm).

19	Potens Semiconductor Corp.	B-23	Bronze
----	----------------------------	------	--------

Potens Semiconductor was established in Taiwan in 2012 by members with 30 years of experience in the industry, specializing in the design and sales of high-efficiency power semiconductors and ICs. Our product portfolio includes low to high-voltage MOSFETs, next-generation GaN (Gallium Nitride) and SiC (Silicon Carbide) devices, as well as DC-DC ICs, Sensor ICs, DrMOS, and advanced power design technologies, all of which play an essential role in enhancing energy efficiency and sustainability.

Potens drives innovation with a focus on renewable energy applications, delivering high-efficiency and highly reliable devices through cutting-edge manufacturing techniques and rigorous quality control systems. In particular, our GaN and SiC technologies enable optimized power conversion and energy storage, contributing significantly to sustainable energy solutions. Additionally, our power design technologies, DC-DC ICs, DrMOS, and Sensor ICs support a wide range of applications in the industrial and automotive sectors, helping to realize high-performance and robust energy solutions.

As Potens continues to expand in global markets, we remain committed to providing expert engineering knowledge and comprehensive support to meet the challenges of competitive markets. For more information, please visit <u>https://www.potens-semi.com/</u>,

and let's work together to build a sustainable future.

	1			
20	Nuvoton Technology Corporation Japan	B-24	Bronze	
For 70 years, Nuvoton Technology Corporation Japan(NTCJ) has been addressing the challenges of people's lives and supporting them with semiconductor technology. Among these, efforts to combat global warming will become increasingly important in the future, and efforts to realize a carbon-neutral world. Effective use of renewable energy is a key technology for achieving carbon neutrality, but because renewable energy has large fluctuations in output, its effective use requires coordination with storage systems, etc. In addition, motor control technology for using this energy effectively will also become important. NTCJ will contribute to the realization of a carbon-neutral society by developing microcontrollers that are optimal for controlling the power electronics used in the conversion and utilization of this energy.				
21	ISAHAYA ELECTRONICS CORPORATION & ICOC	B-25	Bronze	
CORP	over 50 years since its establishment in ORATION has focused on creating products the comfortable through semiconductors and elect	hat enrich and mak		
supplie we off	he power module products, we offer hes/inverters, gate drivers, and DC/DC converter er diodes, bipolar transistors, MOSFETs, an ntially expanding our product lineup.	ers, while in the dis	crete products,	
	nave discrete products as well as hybrid IC tech key components we can ultimately provide sta			
22	Kanadevia Corporation	B-27	Bronze	
As of October 1st, 2024, Kanadevia Corporation has just changed its name from Hitachi Zosen Corporation which has been beloved for more than 80 years, going back to 1943. We are committed to the fields of environment and energy as our main business to achieve a sustainable world and are taking on challenges in various fields by the technology of infrastructure, disaster prevention systems and carbon neutrality. ++Contents++ 1) Renewable energy storage system 2) Lithium iron phosphate (LiFePO4) battery 3) Battery Management Unit for Lithium iron phosphate battery (BMU) 4) Hydrospring(R) (Hydrogen Generator)				
At our Maizuru Works (Kyoto, Japan), we develop and manufacture the Battery Management Units (BMU) equipped with the lithium iron phosphate battery (LFP battery) unit, which is the solution to energy problems. Our LFP battery has the following three features: (1)Long-life, (2)High safety and (3)High-Power discharge. These products are used for renewable energy storage systems, UPS, reefer containers and golf carts. Moreover, regardless of whether the battery capacity is small or large, our products are expected to be used for the various usage such as disaster resilience, off-grid system, supply and demand adjustment and industrial machinery.				
HYDROSPRING(R) is an onsite hydrogen generator that electrolyzes water to generate and supply high-purity hydrogen gas. In recent years, hydrogen has been attracting attention as a form of next-generation energy. It is expected to be used as clean energy by combining it with CO2-free electricity such as renewable energy and Power to Gas.				

23	TAISEI CORPORATION	B-28	Bronze

Taisei Corporation is one of Japan's major general construction companies. Since its founding in 1873, as a pioneer in the construction industry, the company has been involved in numerous construction projects amid social changes such as Japan's modernization, postwar reconstruction, economic growth, and globalization.

Our company has already been at the forefront of sustainability management aimed at sustainable growth and improved corporate value, and we have set a mission of "contributing to the creation of a resilient society where people can live richly and culturally." Currently, the company is leading the way with technology, such as the implementation of zero-carbon buildings toward carbon neutrality and the use of digital twins, AI, and remote technologies to solve various social issues.

At this exhibition, we will introduce our technology that is worthy of being shown at the International Conference on Renewable Energy Research and Application. We will be introducing a variety of technologies, including floating foundations for offshore wind power generation, decarbonization technology, and wireless power supply from roads to electric vehicles currently under development. We look forward to seeing you there.

24	Kyuden Mirai Energy Co.	B-31	Bronze
----	-------------------------	------	--------

Our company was established in July 2014, inheriting the technologies, know how, and frontier spirit related to renewable energy cultivated by the Kyushu Electric Group over more than 100 years.

The Kyushu Electric Group has set the goal of achieving carbon neutrality by 2050 and beyond, striving for carbon negativity, in order to realize the "low carbon and decarbonization of power sources" and "promotion of electrification".

Therefore, in order to grow the renewable energy business as a core segment of the Kyushu Electric Power Group, we are taking over Kyushu Electric Power's geothermal and hydroelectric power generation business in stages from April 2024 onward to strengthen the business foundation and operating structure. Leveraging our ownership of five major renewable energy sources, we will meet society's diversifying energy needs and create new value in renewable energy.

As part of this effort, we are working on the Ministry of the Environment's tidal power generation demonstration project in Naru strait as a new attempt, off the coast of Goto City, Nagasaki Prefecture. Naru strait, which has a maximum current velocity potential of over 3 meters per second, has been designated as a national demonstration field. A generator was installed in the 40m seabed area of that Naru strait, and in January 2021, a British generator was adopted for the first commercial scale (500kW) demonstration operation in Japan. In 2023, the existing 500 kW generator was salvaged, and in 2024, it will be converted to a 1,000 kW Class generator and connected to the power grid for demonstration operation.

The understanding and cooperation of the local community is essential for renewable energy to make effective use of local resources. We will continue to take on the challenge of realizing a sustainable society as a responsible energy provider based on our corporate philosophy of "Toward a Bright Future Powered by Nature."

25	Hitachi, Ltd.	B-32	Bronze
Since its founding in 1010. Hitachi has been beloing customers and society grow and			

Since its founding in 1910, Hitachi has been helping customers and society grow and evolve through business operations based on the corporate philosophy of "Contributing to society through the development of superior, original technology and products."

Today, we are committed to developing new solutions and technologies that address the entire energy value chain to help customers decarbonize and enhance corporate value, with the goal of achieving carbon neutrality by 2050.

	our exhibition, advanced efforts to realize	a decarbonized s	society will be			
showcased on a four-panel monitor.						
26	26 NAGASAKI TOYOPET D-5 Bronze					
Nagasaki Toyopet Co., Ltd. will exhibit Toyota's world-first mass-produced fuel cell vehicle, "MIRAI," at the 13th International Conference on Renewable Energy Research and Applications (ICRERA 2024), organized by IJRER and co-hosted by Nagasaki Institute of Applied Science.						

The MIRAI generates electricity through a chemical reaction between hydrogen and oxygen, and this electricity powers the vehicle's motor. As a result, no CO₂ or other emissions from combustion are produced, and the only emission is water. We invite you to experience this environmentally friendly vehicle firsthand.

In addition, we will be showcasing the "MIRAI Cut Model" under the theme "Revealing the Mechanism of MIRAI," which will allow you to see the internal components and devices that are rarely visible. Nagasaki Toyopet, as a company dedicated to solving societal challenges, is committed to contributing to the achievement of the Sustainable Development Goals (SDGs). Our aim is to promote sustainable development and contribute to the realization of a safe and prosperous community where people, society, and the planet are interconnected.

27	NITTOKU CO., LTD.	E-1	Exhibitor
share i market number providi the glo as win enable must p so, we to proa strateg throug capabi such a recent more s transfo This in produc quality winding		the rapid sales grow hes including factor is pursued a busin ove their competitive integrates multiple p rough a transfer sy portrol using our prop diverse needs and siness domains but y globally promoting o-creation with user s, the Company has not involving a with ounted capacitors a n, devices and tools s, the Company has s not involving a with ounted capacitors a n, devices and tools s, the Company has lifty manufacturer" to the design and buil g to the production ling the pre- and p	wth in overseas ries and a great ness model of e advantage in processes such ystem and that prietary OS. We wants. In doing also continued g our Blue Lake s and suppliers s expanded its nding process, and modules. In s have become as successfully o "line builder." Iding of overall efficiency and post-process of
28	Mitsui O.S.K. Lines, Ltd.	E-2	Exhibitor
The sea occupies 71.1% of the earth's surface. It connects countries around the globe and has given rise to economic activities that have become the foundation of			

The sea occupies 71.1% of the earth's surface. It connects countries around the globe and has given rise to economic activities that have become the foundation of humankind's development. The earth's very potential lies in its oceans. Our home is indeed an "ocean planet." If you look at the world from an ocean perspective, you can see a completely different future. As a company that has always moved forward with the sea, Mitsui O.S.K. Lines (MOL) believe its potential more than anyone. As a Group, our mission is to draw forth this immense value shared by humankind and create sustainable growth for societies. Now is the time for us to think and act outside the box. MOL will utilize the knowledge we have gained through shipping to expand the field to social infrastructure companies that originate from the oceans. When opportunity presents itself, we should take full advantage of it. Let's build new hope for tomorrow, together.

29	QTnet, Inc.	E-3	Exhibitor

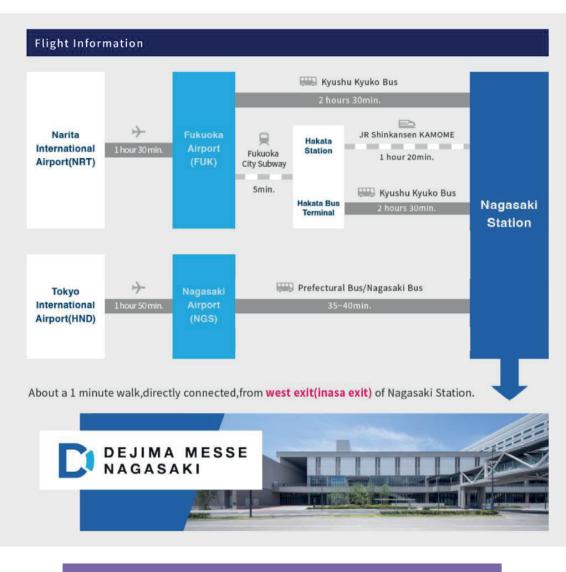
QTnet, Inc., wholly owned subsidiary of Kyushu Electric Power Co., Inc., has been engaged in network and data center operations as a telecommunications operator in the Kyushu area for over 30 years. This time, we are holding a panel exhibition about our "Renewable Energy Supply Service" provided at our three data centers located in central Fukuoka.

Recently, various efforts are being made nationwide to reduce CO2 emissions towards achieving 46% reduction in greenhouse gases by 2030 (compared to 2013 levels) and carbon neutrality by 2050.

As part of such efforts, our company offers the "Renewable Energy Supply Service" to our data center customers.

By using this service, customers can offset the CO2 emissions produced by their use of the data center.

Specifically, by combining this service with a non-fossil certificate — which certifies the environmental value of electricity generated from renewable energy sources such as solar and wind — the electricity used at the housing racks or colocation spaces in the data center can also be regarded as "virtually renewable energy."

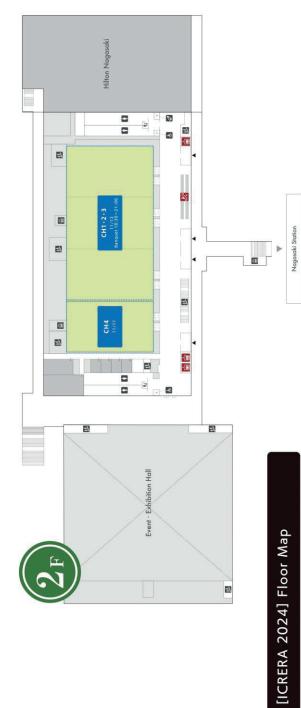

Additionally, the service addresses RE100, RE Action Declaration for 100% Renewable Energy, and the Act on Promotion of Global Warming Countermeasures, thus contributing to our customers' environmental initiatives.

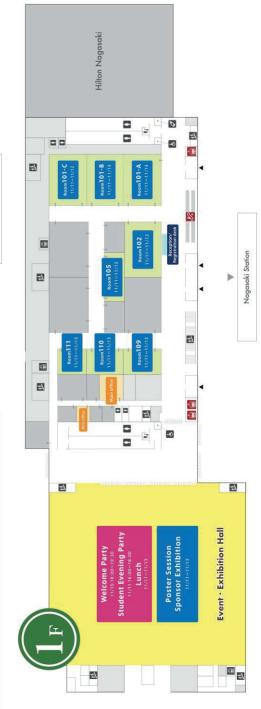
For more details about this service, please feel free to contact us.

Industrial Session at Room 105

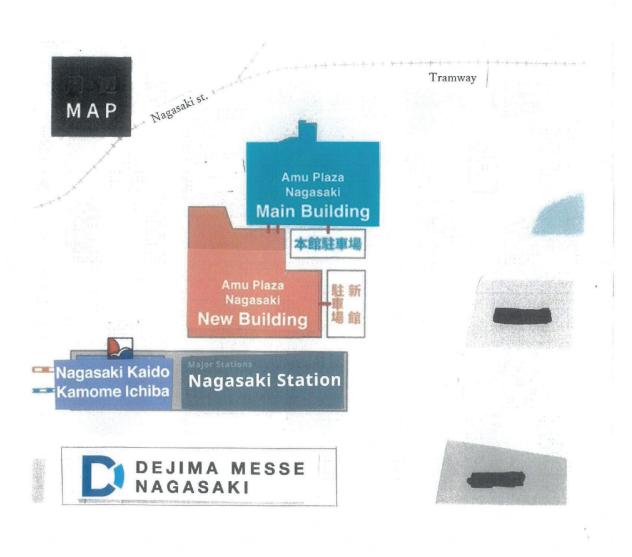
Program

Ine	Industrial Session of ICRERA 2024, November 11 - November 12, 2024, Nagasaki, Japan@Meeting Room105			
	2024/11/11 Diamond Partners 13:00~15:00		2024/11/12 Gold. Bronze Partners 13:00~17:00	
	NTT Advanced Technology Corporation		Fudo-Giken Industry Co., Ltd	
13:00	Mr.Kei Tomooka	13:00	PAL Corporation	
	13:00~13:20		Mr.Hirofumi Nakamura	
<u> </u>	NTT DOCOMO, INC.		13:00~13:10 Plexim GmbH	
13:25	Mr.Yuuta Toyama	13:15	Mr.Hideki Kagawa	
	13:25~13:45		13:15~13:25	
	PAYCLE Inc.		Potents Semiconducter Corp.	
13:50	UPCX-Platforms PTE. LTD.	13:30	Ms.Akari Noda	
10.00	Mr.Joerg Alexander Weisshaar		Mr.Ph. D. Tim Chen	
	13:50~14:10		13:30~13:40	
	KYOCERA Corporation		Yokogawa Test & Measurement Corporation	
14:15	Mr.Takashi Ono	13:45	Mr.Akihiko Ito	
	14:15~14:35		13:45~13:55 Kyowakiden Industry Co., Ltd	
		14:00	Mr.Makabe Rvo	
		14:00		
<u> </u>			14:00~14:10 EAST JAPAN RAILWAY COMPANY (JR-East)	
		14:15	Mr.Kota Minaminosono	
			14:15~14:25	
			D-Solution Co., Ltd.	
		14:30	Mr.Yutaro Maruyama	
			14:30~14:40	
			ISAHAYA ELECTRONICS CORPORATION	
		14:45	ICOC	
		14,40	Mr.Akio Segami	
			14:45~14:55	
			Nuvoton Technology Corporation Japan	
		15:00	Mr.Inoue Ikunori	
			15:00~15:10	
		15:15	DENSO TEN Limited	
		10:10	Mr.Hiroki Ikehara	
<u> </u>			15:15~15:25 Smart Energy Laboratory CoLtd.	
		15:30	Mr.Soichiro Nakamura	
			15:30~15:40	
			NTT Devices Cross Technologies Corporation	
		15:45	Mr.Yasuyuki Umezaki	
			15:45~15:55	
			Kanadevia Corporation	
		16:00	Mr.Hiroaki Kobayashi, Ms.Tomoka Nakai	
			16:00~16:10	
			Hitachi, Ltd. Mr. Kenji Urase	
		16:15	16:15~16:25	
			Modelcore laboratories LTD.	
		16:30	Prof.Yu Yonezawa	
			16:30~16:40	
			ROHM Co., Ltd.	
		16:45	Mr.Asuma Imamura	
			16:45~16:55	


Venue : Dejima Messe Nagasaki


Dejima Messe Nagasaki in Nagasaki, Japan Address: 4-1, Onoue-machi, Nagasaki City, Nagasaki Prefecture, Japan

Dejima Messe Nagasaki Floor Map


Presentation Instruction for ICRERA 2024 Presenters

- Total time is 25 min, including 20 minutes of presentation and 5 minutes of question and discussion.
- Please use your PC with an HDMI connection for your presentation.
- Please enter the room 10 minutes before your session.
- No-show papers will NOT be uploaded to IEEE Xplore.

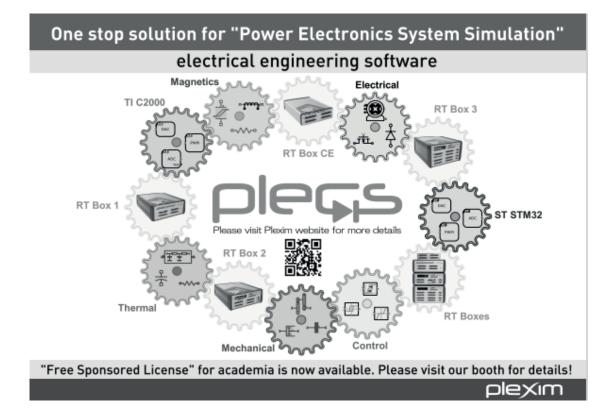
Notes for Participants

- At the closing ceremony, the awards winners will be announced.
- Foods are halal, and the tableware and cooking utensils are halal-friendly.

Restaurant Guide Map

The voucher that will be given for lunch on November 13 is non-refundable and cannot be used at McDonald's.

HITACHI Inspire the Next



Kyuden Mirai Energy

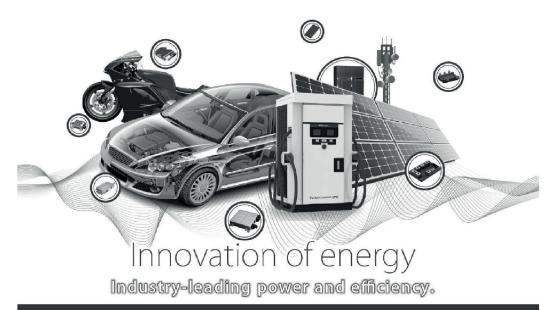
Test&Measurement

Yokogawa 🖣

High-speed sample rate up to 200 MS/s Maximum 8 G-point memory Maximum 8 G-point memory
 More than 20 plug-in modules compatible with a wide variety of sensors
 Multiple units synchronous measurement u to 160 CH
 High-speed data transfer (10 GbE)

Precision Making

Support so basic power accuracy of ±0 h Votages CC to 10 MHz Lument: DC to 5 MHz High-precision measurement PWM power with low powe measurement of up to 7 inputs * function for up to 4 motor


on function for

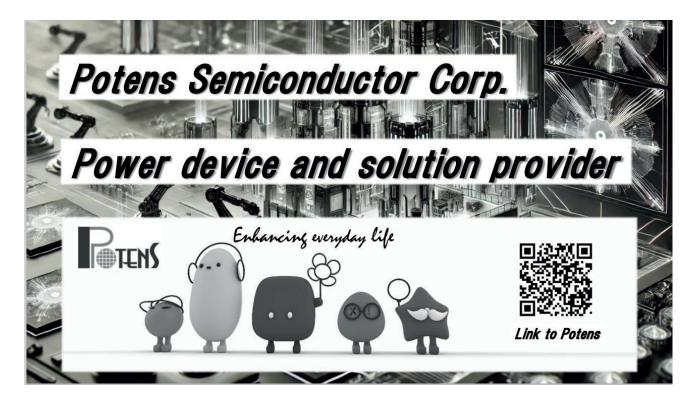
High Definition Oscilloscope • 12-bit high resolution • Maximum 8 analog CH, 32-bit logic Maximum 5 analog Crt, ocrossor Maximum 1 G-point memory Automotive serial bus signal analysis Dual unit synchronization function DLMsync allows simultaneous measurement of up to 16 analog CH

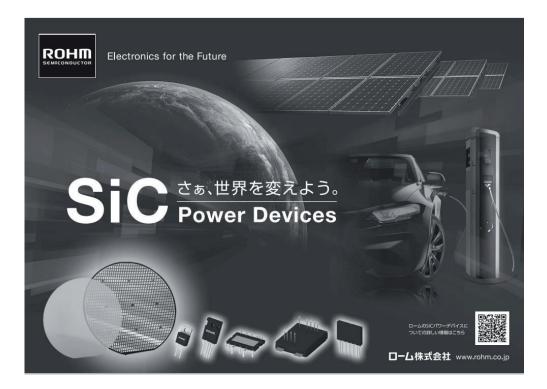
Dual unit synchroning simultaneous measurement or up --and 64-bit logic Ma also have DLM3000HD series, compact model Yokogawa Test & Measurement Corporation

Global Sales Dept. /E-r il: tm@cs.jp.yokogawa.com https://tmi.yo

Shin Dengen

New power. Your power.

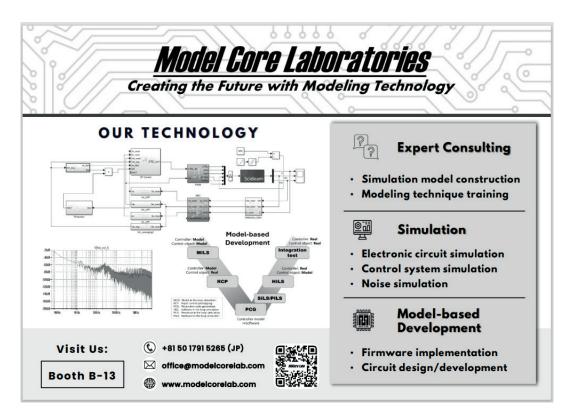

If we change the start, we can start the change.


SILENT INNOVATION.

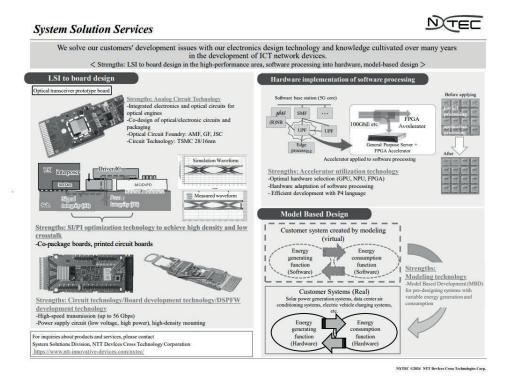
Every day, transmission lines supply the world's energy. From our daily lives to global manufacturing, it all starts here. HITACHI Inspire the Next

Solutions, and Nuclear Energy business units are committed to innovation. And now, it's why we strive to make our energy systems carbon neutral.

lt may be a quiet change. But it's a big change, because it brings us closer to our goal: A sustainable future for all.


More Dreams, More Challenges

Isahaya Electronics' power module products contribute in various fields. Isahaya Electronics which keeps on dreams and challenges.



BRONZE SPONSOR

Brighten our future through renewables.

SDGs取組みの評価・分析を通じて、サステナビリティ活動をサポート Sustainable Scale Index

■Sustainable Scale Indexについて

Sustainable Scale Indexは、約200の評価項目に回答することで、回答した企業のSDGsに関連する 取組みを指標化できます。類似同業者との相対評価で、回答した企業の立ち位置を把握することができます。

■SDGsとは

『持続可能な開発目標』(Sustainable Development Goals)の略称で、2015年9月に国連で採択 された国際目標です。17の目標と、その目標を具体的にした169のターゲットからなり、国連に加盟する 全ての国が、2030年までに、貧困や飢餓、エネルギー、気候変動、平和社会など、幅広い課題の解決を 目指しています。

くわしくはお近くの十八親和銀行窓口までおたずねください。

15十八親和銀行

BRONZE SPONSOR

NAGASAKI TOYOPET

EXHIBITORS

[NITTOKU CO., LTD.]

NITTOKU is a Saitama-based coil-winding machine manufacturer founded in 1972. We have pursued a business model of providing a production system that helps users improve their competitive advantage in the global market. To this end, we offer a system that integrates multiple processes such as winding, handling, assembly, and inspection through a transfer system and that enables high-performance multi-axis synchronous control using our proprietary OS. Thanks to the rapid sales growth in overseas markets, now we have more than 20 overseas branches including factories and a great number of foreign customers worldwide.

Please contact us with any inquiries about us. Global Sales HQ : https://nittoku.co.jp/english/contact/business-n/

[Mitsui O.S.K. Lines, Ltd.]

The sea occupies 71.1% of the earth's surface. It connects countries around the globe and has given rise to economic activities that have become the foundation of humankind's development. The earth's very potential lies in its oceans. Our home is indeed an "ocean planet." If you look at the world from an ocean perspective, you can see a completely different future. As a company that has always moved forward with the sea, Mitsui O.S.K. Lines (MOL) believe its potential more than anyone. As a Group, our mission is to draw forth this immense value shared by humankind and create sustainable growth for societies. Now is the time for us to think and act outside the box. MOL will utilize the knowledge we have gained through shipping to expand the field to social infrastructure companies that originate from the oceans. When opportunity presents itself, we should take full advantage of it. Let's build new hope for tomorrow, together.

(Contact)Mitsui O.S.K. Lines, Ltd.Address: 1-1, Toranomon 2-Chome, Minato-ku, Tokyo 105-8688 https://www.mol-service.com/en/contact

[QTnet,Inc.]

QTnet, Inc., wholly owned subsidiary of Kyushu Electric Power Co., Inc., has been engaged in network and data center operations as a telecommunications operator in the Kyushu area for over 30 years. This time, we are holding a panel exhibition about our "Renewable Energy Supply Service" provided at our three data centers located in central Fukuoka.

Recently, various efforts are being made nationwide to reduce CO2 emissions towards achieving 46% reduction in greenhouse gases by 2030 (compared to 2013 levels) and carbon neutrality by 2050.

As part of such efforts, our company offers the "Renewable Energy Supply Service" to our data center customers.

By using this service, customers can offset the CO2 emissions produced by their use of the data center. Specifically, by combining this service with a non-fossil certificate — which certifies the environmental

value of electricity generated from renewable energy sources such as solar and wind — the electricity used at the housing racks or colocation spaces in the data center can also be regarded as "virtually renewable energy."

Additionally, the service addresses RE100, RE Action Declaration for 100% Renewable Energy, and the Act on Promotion of Global Warming Countermeasures, thus contributing to our customers' environmental initiatives.

For more details about this service, please feel free to contact us.

<Address>[Tenjin Head Office]12-20, Tenjin 1-chome, Chuo-ku, Fukuoka 810-0001, Japan

[Akasaka Head Office]9-39, Maizuru 3-chome, Chuo-ku, Fukuoka 810-0073, Japan

[Branch Offices]Kitakyushu, Fukuoka, Saga, Nagasaki, Kumamoto, Oita, Miyazaki, Kagoshima, Tokyo

[Service Operation Center]Fukuoka [Customer Center]Fukuoka[Data Centers]Fukuoka (QD1, QD2, QD3) <President>Yoshio Ogura <Shareholders>Kyushu Electric Power Co., Inc. (100%)

<Business>1.Telecommunications - Network services (for enterprises / for consumers) - Data centers / cloud - ICT solutions 2.Cable broadcasting 3.Electric power retailing 4.e-sports

<Contact>QTnet,Inc. Corporate Sales Department, Sales Promotion Group

TEL: 092-981-7571 FAX: 092-981-7599 MAIL: info@qtnet.co.jp